Funktionsverläufe

Um den Graphen von

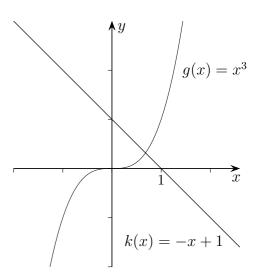
$$f(x) = x^3 - x + 1$$

zu skizzieren, skizzieren wir zunächst die Graphen der Teilfunktionen

$$g(x) = x^3$$
 und $k(x) = -x + 1$.

Den Graphen von f erhalten wir dann durch Ordinatenaddition. (Die x-Koordinate eines Punktes heißt Abszisse, die y-Koordinate heißt Ordinate.)

Die Funktionsverläufe zeigen etwas Typisches.



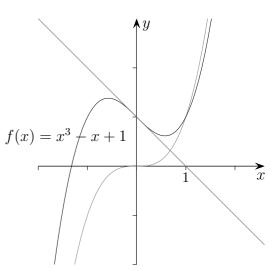
In einer kleinen Umgebung des Ursprungs wird der Verlauf näherungsweise durch die Summanden mit niedrigen x-Potenzen bestimmt, für große x-Werte ist der Summand mit der höchsten x-Potenz bestimmend.

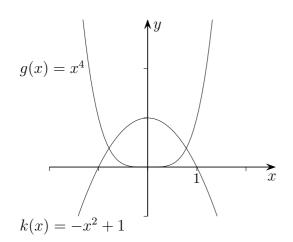
Wir betrachten ein weiteres Beispiel. Um den Graphen von

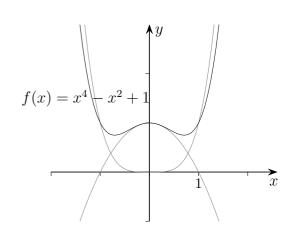
$$f(x) = x^4 - x^2 + 1$$

zu skizzieren, skizzieren wir zunächst die Graphen der Teilfunktionen

$$g(x) = x^4$$
 und $k(x) = -x^2 + 1$.







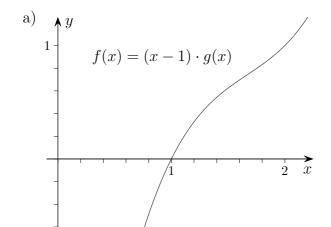
Mehrfache Nullstellen

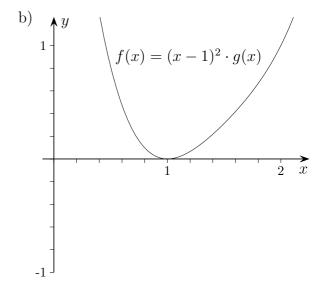
Die Funktion

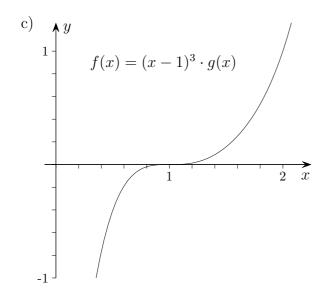
$$f(x) = (x-1) \cdot (x+3)^2 \cdot (x-4)^3$$

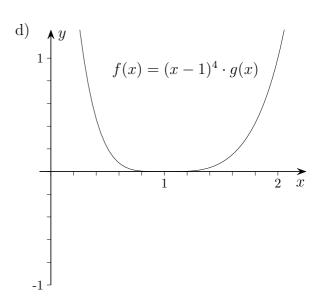
hat die einfache Nullstelle $x_1=1,$ die doppelte Nullstelle $x_2=-3$ und die dreifache Nullstelle $x_3=4.$

Erläutere den typischen Verlauf des Graphen in der Nähe der ein- bzw. mehrfachen Nullstelle, $g(x) = x^2 - 4x + 5$.









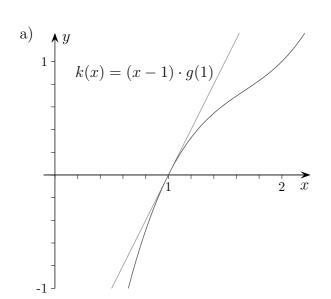
Mehrfache Nullstellen

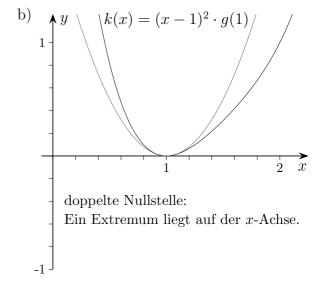
Die Funktion

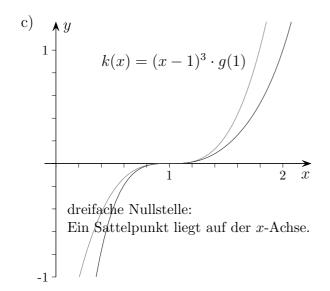
$$f(x) = (x-1) \cdot (x+3)^2 \cdot (x-4)^3$$

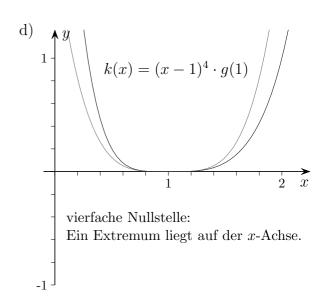
hat die einfache Nullstelle $x_1=1,$ die doppelte Nullstelle $x_2=-3$ und die dreifache Nullstelle $x_3=4.$

Erläutere den typischen Verlauf des Graphen in der Nähe der ein- bzw. mehrfachen Nullstelle, $g(x) = x^2 - 4x + 5$.







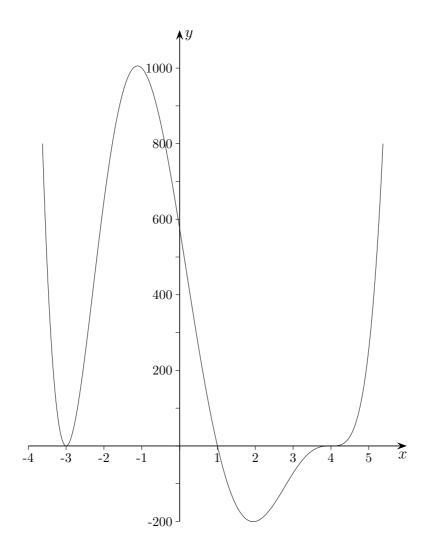


Mehrfache Nullstellen

Die Funktion

$$f(x) = (x-1) \cdot (x+3)^2 \cdot (x-4)^3$$

hat die einfache Nullstelle $x_1=1,$ die doppelte Nullstelle $x_2=-3$ und die dreifache Nullstelle $x_3=4.$



Ganzrationale Funktionen (Polynomfunktionen)

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$$

Der Grad der Funktion ist n $(a_n \neq 0)$, $a_n, a_{n-1}, \ldots, a_1, a_0$ sind die Koeffizienten.

n = 0	konstante Funktion	$f(x) = a_0$	
n = 1	lineare Funktion	$f(x) = a_1 x + a_0$	eine Nullstelle
n = 2	quadratische Funktion Parabel	$f(x) = a_2 x^2 + a_1 x + a_0$	höchstens 2 Nullstellen
n = 3	kubische Funktion	$f(x) = a_3 x^3 + a_2 x^2 + a_1 x + a_0$ $f(x) = (x - n_1)(x - n_2)(x - n_3)$	1, 2 oder 3 Nullstellen
		$f(x) = (x - n_1)(a_2x^2 + a_1x + a_0)$	quadratischer Term hat
			höchstens 2 Nullstellen

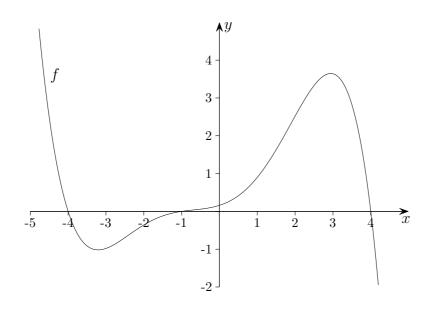
Ganzrationale Funktionen Verhalten für $x \longrightarrow \infty$

Graph verhält sich wie der Graph der entsprechenden Potenzfunktion $g(x) = a_n x^n$. Die Unterscheidung n gerade/ungerade ist erforderlich.

Verhalten für x in einer Umgebung der null.

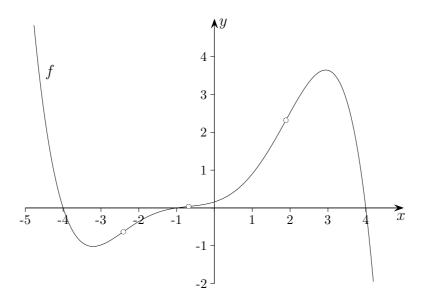
Graph verhält sich wie der Graph der entsprechenden linearen Funktion $g(x) = a_1x + a_0$.

Von welchem Grad ist f mindestens?



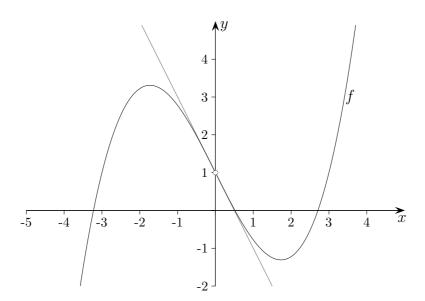
© Roolfs

Von welchem Grad ist f mindestens?



Es liegen 3 Wendepunkte vor. f'' ist mindestens kubisch, f mindestens 5. Grades.

Verlauf in der Nähe der y-Achse



$$f(x) = \frac{2}{9}x^3 - 2x + 1$$

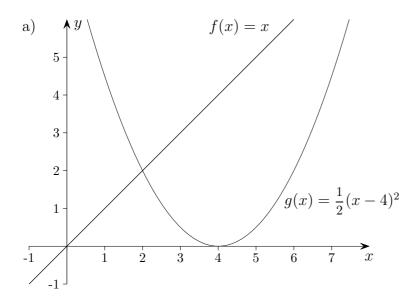
An der Stelle x=0, also im Punkt $A(0\mid 1),$ lautet die Tangentengleichung y=-2x+1.

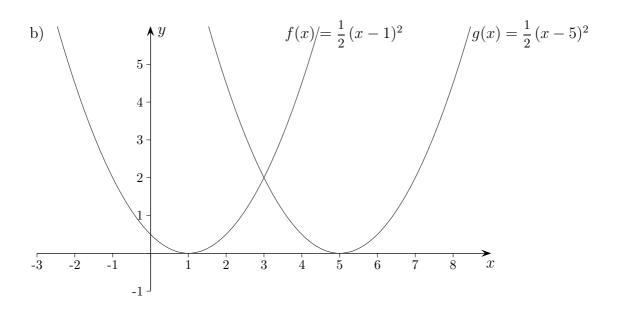
$$f(x) = a_3 x^3 + a_2 x^2 + a_1 x + a_0$$

An der Stelle x=0, also im Punkt $A(0\mid a_0)$, lautet die Tangentengleichung $y=a_1x+a_0$.

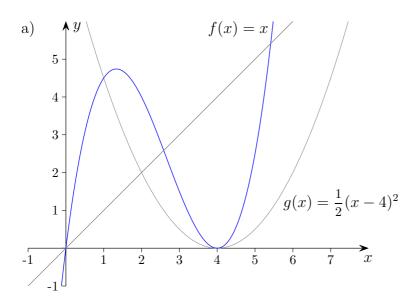
Dieser Sachverhalt kann bei Fragestellungen, bei denen Funktionsterme Graphen zugeordnet werden sollen, nützlich sein.

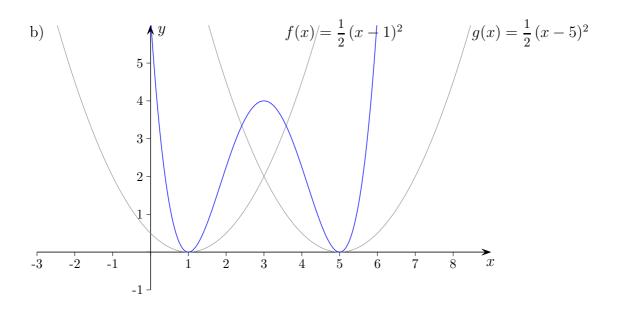
Skizziere den Graphen des Produkts.



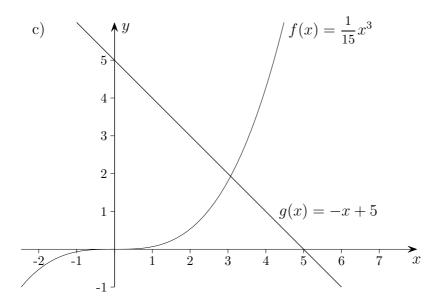


Skizziere den Graphen des Produkts $h(x) = f(x) \cdot g(x)$.





Skizziere den Graphen des Produkts.



Skizziere den Graphen des Produkts $h(x) = f(x) \cdot g(x)$.

