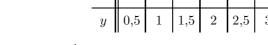
Grafische Auswertung von Messergebnissen

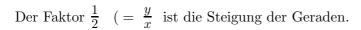
1. Grundkenntnisse:

Zwischen den Größen x und y bestehe die proportionale Beziehung $(y \sim x)$:

	1					
y	0,5	1	1,5	2	2,5	3



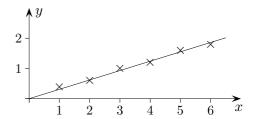
genauer: $y = \frac{1}{2}x$.



Der Ansatz y = a x, ein beliebiger Punkt $P(x_o \mid y_o)$, z.B. $P(4 \mid 2)$, Einsetzen und Auflösen nach a führen auch zum Ergebnis $a = \frac{1}{2}$.

2. Wie kann ein proportionaler Zusammenhang aufgedeckt werden, falls die Tabellen-Werte fehlerbehaftet sind?

	\boldsymbol{x}	0	1	2	3	4	5	6
_	y	0	0,4	0,6	1,0	1,2	1,6	1,8

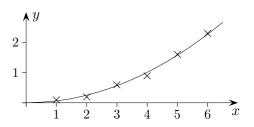


Die Wertepaare werden grafisch dargestellt.

Nach Augenmaß wird eine Ausgleichsgerade durch den Ursprung gezeichnet und deren Steigung ermittelt. Wir erhalten $y \sim x$, genauer: y = 0.31 x.

3. Die Grafik lässt einen parabelförmigen Kurvenverlauf, d.h. einen quadratischen Zusammenhang $y = a x^2$ vermuten.

x	0	1	2	3	4	5	6
y	0	0,1	0,2	0,6	0,9	1,6	2,3



Lägen alle Punkte auf der Parabel, so könnte $\,a\,$

mit einem Punkt $P(x_0 | y_0)$ durch Einsetzen in $y = a x^2$ und Auflösen bestimmt werden, $a = \frac{y_0}{x_0^2}$.

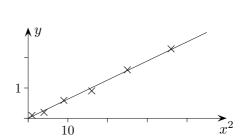
Aufgrund der Messfehler wären alle Quotienten der folgenden Wertepaare zu betrachten.

	0						
y	0	0,1	0,2	0,6	0,9	1,6	2,3

Diese Wertepaare werden nun grafisch dargestellt.

Die Ausgleichsgerade belegt $y \sim x^2$.

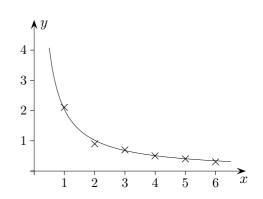
Die Steigung der Geraden ist ein Näherungswert für a, wir erhalten a = 0.063 und insgesamt $y = 0.063 x^2$.



Roolfs

Grafische Auswertung von Messergebnissen Fortsetzung

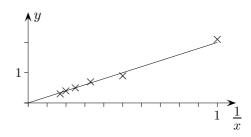
4. Die Grafik lässt einen hyperbelartigen Kurvenverlauf, d.h. einen antiproportionalen Zusammenhang $y=\frac{a}{x}\quad \text{vermuten}.$



Lägen alle Punkte auf der Hyperbel, so könnte a mit einem Punkt $P(x_o \mid y_o)$ durch Einsetzen in $y = \frac{a}{x}$ und Auflösen bestimmt werden, $a = \frac{y_0}{\frac{1}{x_0}}$.

Aufgrund der Messfehler wären alle Quotienten der folgenden Wertepaare zu betrachten.

Die Ausgleichsgerade belegt $y \sim \frac{1}{x}$. In diesem Fall ist a=2,0 und insgesamt dann $y=\frac{2,0}{x}$.



- 5. Wie ist vorzugehen, um Vermutungen wie $y = a\sqrt{x}$ oder $y = \sqrt{\frac{a}{x}}$ zu untersuchen?
- 6. Für einen vermuteten Zusammenhang $y=e^{ax}$ erhalten wir durch Auflösen $a=\frac{\ln y}{x}$. Zum Zeichnen der Ausgleichsgeraden sind daher die Logarithmen der y-Werte zu bilden:

7. Aus $y = x^a$ folgt $a = \frac{\ln y}{\ln x}$.

Für diese Potenzfunktionen sind die Logarithmen der x- und y-Werte zu bilden:

Roolfs

Auswertung von Messergebnissen mit dem TI-83

1. Um die Steigung a der Ausgleichsgraden (Regressionsgeraden) durch den Ursprung zu ermitteln, reicht es in vielen Fällen aus, den Schwerpunkt der Messpunkte zu betrachten. Dies führt zu:

$$a = \frac{y_1 + y_2 + \dots + y_n}{x_1 + x_2 + \dots + x_n}$$

a ist auch Lösung der Gleichung: $y_1-ax_1+y_2-ax_2+...+y_n-ax_n=0$. Die Punkte sind dann so um die Gerade verteilt, dass sich die y-Differenzen y_i-ax_i ausgleichen.

x-Werte in L1, y-Werte in L2 eintragen, sum(L2)/sum(L1)

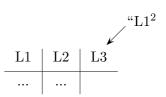
sum ist zu finden unter: 2nd LIST MATH 5: sum(

2. Eine Berechnung der Steigung a aufgrund der Methode der kleinsten Quadrate ergibt:

$$a = \frac{x_1 y_1 + x_2 y_2 + \dots + x_n y_n}{x_1^2 + x_2^2 + \dots + x_n^2}$$

 $\mathrm{sum}(\mathrm{L}1*\mathrm{L}2)/\mathrm{sum}(\mathrm{L}1^2)$

An der Stelle a liegt ein Minimum der Funktion $d(a) = (y_1 - ax_1)^2 + (y_2 - ax_2)^2 + ... + (y_n - ax_n)^2$ vor. Die Ursprungsgerade liegt nun so, dass die Quadratsumme der y-Differenzen zu den Punkten minimal wird.



3. Falls zunächst die x-Werte quadriert oder von ihnen reziproke Werte gebildet werden müssen, so kann dies in L3 erfolgen. Anschließend wird das Obige auf L2 und L3 angewandt.

$$\begin{aligned} &\operatorname{sum}(\operatorname{L2})/\operatorname{sum}(\operatorname{L3})\\ &\operatorname{oder}\\ &\operatorname{sum}(\operatorname{L2}*\operatorname{L3})/\operatorname{sum}(\operatorname{L3}^2) \end{aligned}$$