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↑ Real numbers R

The diagonal length of a square with side length 1 is exactly
√
2 length unit.

√
2 = 1,414213562373095048801688724209698078569671875376948073176679737990732 . . .

We can consider
√
2 as a number with an infinite number of digits after the decimal point. This idea

is facilitated if we remember that we can easily speak of the infinite set of natural numbers N.

0,101001000100001000001 . . .

1/7 = 0,142857142857142857142857142857142857 . . . periodical

All 0/1/2/3 . . . /9 -sequences preceded by a, . . . (a ∈ Z) form the set of real numbers.

Numbers are virtual, they only exist in our mind. Therefore, this construction is possible.
Real numbers that consist only of zeros from a position on (which can be omitted) are the finite
decimal numbers. The real numbers are necessary because in theory there should be no limits of
accuracy. But how are these infinite decimal numbers added and multiplied?

As an example we calculate π2.

π = 3,141592653589793238462643383279502884197169399375105820974944592307816 . . .

π ∈ [3,1415; 3,1416]

π2 ∈ [3,14152; 3,14162]

π2 ∈ [9,86902225; 9,86965056]

π2 = 9,869 . . .

next step

π ∈ [3,14159; 3,14160]

π2 ∈ [3,141592; 3,141602]

π2 ∈ [9,8695877281; 9,86965056]

π2 = 9,869 . . . has been of no use

next step

π ∈ [3,141592; 3,141593]

π2 ∈ [3,1415922; 3,1415932]

π2 ∈ [9,869600294464; 9,869606577649]

π2 = 9,86960 . . .

and so on.

We imagine that with this interval nesting to the decimal number approximations (∈ Q)
of π successively the valid decimal digits of

π2 = 9,869604401089358618834490999876151135313699407240790626413349376220042 . . .

emerge. In fact, we have sketched out the idea of how multiplication (analogous to addition) can be
done, so that terms like 3π, 4

√
5,

√
2 +

√
7 are being explained.

↑ c© Roolfs
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↑ Addition in R

As an example we calculate
√
2 +

√
7.

√
2 = 1,4142135623730950488 . . .

√
7 = 2,6457513110645905905 . . .

√
2 ∈ [1,4142; 1,4143]

√
7 ∈ [2,6457; 2,6458]

√
2 +

√
7 ∈ [4,0599; 4,0601]

√
2 +

√
7 = 4,0 . . .

next step
√
2 ∈ [1,41421; 1,41422]

√
7 ∈ [2,64575; 2,64576]

√
2 +

√
7 ∈ [4,05996; 4,05998]

√
2 +

√
7 = 4,0599 . . .

next step
√
2 ∈ [1,414213; 1,414214]

√
7 ∈ [2,645751; 2,645752]

√
2 +

√
7 ∈ [4,059964; 4,059966]

√
2 +

√
7 = 4,05996 . . .

and so on.

With this interval nesting emerge to the decimal number approximations of
√
2 und

√
7

successively the valid digits of
√
2 +

√
7. To put it more elegantly:

The sum is the supremum (see page 4) of all left (monotonically increasing) interval boundaries,
and the infimum of all right-hand interval boundaries.

√
2 = 1,414213562373

095048
801

68
87

24
20

9
69
80
78569671

√
7 = 2,645751311064

590590
501

61
57

53
63

9
26
04
25710259

√
2 +

√
7 = 4,059964873437

685639
303

30
44

77
84

8
95
85
04279931
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The unbiased handling of real numbers as infinite decimal numbers facilitates access to limit
considerations, which becomes necessary from the 11th grade onwards. The alternative,

”
elegant“

construction with Cauchy sequences or Dedekind cuts is reserved for the study of mathematics. This
approach is more advanced, but by no means more

”
rigorous“. In an axiomatic introduction of the real

numbers, for didactic reasons, the reference to infinite decimal numbers, as well as the simple calculation
of the supremum (next page) for limited sets should not be missing.

Of a real number only an initial part is visible, but in principle of arbitrary length
(even if this can require considerable effort).

Considering the table,

it is reasonable to assume that the (monotone) sequence an = (1 + 1−n)
n

converges1.

As n increases, more and more valid decimal digits result2.

n (1 + 1−n)
n

101 2,593 742 46 . . .

102 2,704 813 82 . . .

103 2,716 923 93 . . .

104 2,718 145 92 . . .

105 2,718 268 23 . . .

106 2,718 280 46 . . .

107 2,718 281 69 . . .

108 2,718 281 81 . . .

Due to Euler(1707 - 1783) the limit lim
n→∞

an is called e (e from exponential).

e is of great importance in calculus because of (ex)′ = ex .

The numbers in this sequence are rational.
The example proves the connection between limit values and real numbers.

e = 2,718281828459
045235

360
28

74
71

35
2
66
24
97757247

1 The sequence is bounded. With the monotony follows the convergence (against the supremum,
theorem of analysis).

2 The proof which decimal digits are valid can be done with an interval nesting.

↑ c© Roolfs
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↑ Supremum/Infimum

The supremum of a set of numbers is the smallest upper bound.
The infimum of a set of numbers is the largest lower bound.

The following six statements are equivalent and characterise therefore equally
the completeness of the real numbers:

1. Interval nesting principle
2. Every non-empty upper bounded subset of R has a supremum.
3. Every non-empty lower bounded subset of R has an infimum.
4. Every Cauchy sequence converges against a real number.
5. Each bounded sequence has an accumulation point (Bolzano-Weierstraß).
6. Every monotonically increasing upward bounded sequence converges.

Interval nesting principle

Let (In) be a sequence of closed, bounded intervals with the properties

(1) I1 ⊇ I2 ⊇ . . . , and

(2) the diameters of In tend towards 0.

Then there is exactly one real number a that lies in each interval In.

Let A be a non-empty, upper bounded subset of positive numbers from R.

Proof of the supremum

The numbers from A are of the form a,a1a2a3a4 . . ., a ∈ N, ai ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.
In A there exists a number with a maximal.
Among all numbers a,a1a2a3a4 . . . from A there exists a number with a1 maximal.
Among all numbers a,a1a2a3a4 . . . from A there exists a number with a2 maximal.
Among all numbers a,a1a2a3a4 . . . from A there exists a number with a3 maximal
and so on.

Visual:
The Supremum a,a1a2a3a4 . . . is like a minimal envelope that is wrapped on top of A.

For a Cauchy sequence, the following is true:

∀
ε > 0

∃
n0 ∈ N

∀
m,n ≥ n0

| am − an | < ε

From a certain position (n0) the distance between the sequence elements is arbitrarily small.
From a certain position the sequence elements differ arbitrarily little of each other.

At 5.

Ongoing bisection of the interval (sequence limited!), whereby at least in one half there are infinitely
many elements of the sequence, leads to an accumulation point.

↑ c© Roolfs
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↑ Limit

Examples:√
5, π, 0,101001000100001 . . .,

1

3
= 0,3

Since a real number has infinite number of digits after the decimal point, it can be difficult to grasp, if it
is not a root or is not periodic or does not have a pattern. Way out: With a convergent sequence, a real
number can be defined, it is then called the limit of the sequence.

a = 0,101001000100001 . . . is characterised by the sequence

a1 = 0,1

a2 = 0,101

a3 = 0,101001

. . .

The sequence elements are approximations for a. The further one proceeds in the sequence, the better
the approximations will be, and the more valid digits will emerge of the limit.

The sequence converges to a, because for every (arbitrarily small) neighbourhood (it is a measure of the
deviation) of a there is a position in the sequence, from which all further sequence members lie in the
neighbourhood.

Definition

The sequence (an )n∈N converges (strives) against the limit a, written lim
n→∞

an = a or an → a,

if holds true

∀
ε > 0

∃
n0 ∈ N

∀
n ≥ n0

| an − a | < ε or in another notation:

∀ ε > 0 ∃n0 ∈ N (n ≥ n0 =⇒ | an − a | < ε)

A convergent sequence defines a real number (limit) from which any number of digits can be calculated.

| an − a |< ε means an − ε < a < an + ε.

For instance ε = 10−5, from the related n0 onwards (at least) the first 4 digits after the comma
of an and a coincide,

,a1na
2
na

3
na

4
n(a

5
n − 1) . . . < ,a1a2a3a4a5 . . . < ,a1na

2
na

3
na

4
n(a

5
n + 1) . . .

provided that the 5th an-digits after the comma a5n is not 0 or 9. If necessary, n is to be chosen larger.
Otherwise, for instance a = 1,000001, an = 0,9999 and | an − a |< 10−5 is possible.

A sequence with the convergence behavior of the definition and computable n0

is an algorithm to compute a real number to an arbitrarily specified number of digits.

However, because of the ambiguity of the number representation, it must be more precise:
. . . is an algorithm, to obtain an approximation for a real number with arbitrarily given (small) difference.

↑ c© Roolfs
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↑ Cauchy sequence

a

a− ε/2 a+ ε/2

Every convergent sequence is a Cauchy sequence.

According to the condition, from a certain position onwards all sequence members lie in the ε/2-environment
of a. For these sequence elements the distance from each other must then be smaller than ε.

The reversal is more important.
Each Cauchy sequence has a limit.

A Cauchy sequence is bounded and therefore contains a convergent subsequence.

| am − an | < ε means an − ε < am < an + ε.

That is, for ε = 10−k, starting from the related n0, (at least) the first k− 1 digits after the decimal point
of an and am agree with each other. (for all m > n, provided the kth an-digit after the decimal point is
not 0 or 9).
This ensures that the remaining sequence members are arbitrarily close to the subsequence.

Plausible: A Cauchy sequence thus defines a number (a limit) a.

The formal proof can be found in many calculus scripts.

illustrative:

Cauchy sequences are sequences whose fluctuations become arbitrarily small,
which at some position begin to “tread water“.

Epsilontic initially is a hurdle that unfortunately often has to be taken without being prepared.
Let us assume that the equality of two real numbers a and b is to be proved. This is not easy to do
due to the infinitely many decimal digits. But if it were possible, for every ε > 0 to verify the
inequality | b− a | < ε , a = b would have to hold.
Let us further assume that the number b is defined by a sequence an. Then for every ε > 0 there
would have to be an index n0, so that for all further sequence elements | an − a | < ε holds.
Now the jump to the definition (Weierstrass 1815 -1897) is not far:

The sequence (an )n∈N converges against the limit a, written lim
n→∞

an = a, if applies:

∀
ε > 0

∃
n0 ∈ N

∀
n ≥ n0

| an − a | < ε

The sequence then defines the value a.

In the ε-n0 proof n0 is to be represented as a function of ε, the notation n0(ε) makes this clear. It is
not necessary to specify this function explicitly or to search for the smallest possible n0. It is sufficient
to show that for every ε > 0 there is such a n0. The ε-n0 proof does not depend on large ε. If the ε-n0

proof applies is valid for all 0 < ε < ε0 with any ε0 > 0, it is also valid for all ε > 0. For convergence
questions, the first sequence members are irrelevant. Finally, in the ε-n0 proof, it does not matter
whether is used |an − a| < ε or |an − a| ≤ ε, n ≥ n0 or n > n0. All possible formulations are equivalent.

↑ c© Roolfs
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↑ Visualisation
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Such a graph only partially visualises the definition of the limit value lim
n→∞

an = a.

The convergence condition states that for every (no matter how small) ε > 0 there exists an index n0,
so that from the position n0 onwards (means for n ≥ n0) all an lie in the interval [a− ε, a+ ε], the
points (n, an) then lie in the ε strip.

For any ε > 0, the points (n, an) ultimately lie in the ε-strip.

Equivalent:
For each ε > 0, only finitely many points (n, an) lie outside the ε strip.

The graph only gives the relation for one ε. By the condition: for each ε > 0 . . . a real number a is
defined by the sequence. Unlimited further valid decimal digits of (here) 2 = 1,9999 . . . = 2,0000 . . .
are created.

a100 = 1,742959

a200 = 2,005546

a300 = 1,999985

a400 = 1,999998

a425 = 1,9999996

a450 = 2,00000006

. . .

↑ c© Roolfs
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↑ Calculus

We imagine dropping a stone from a high rise building and are interested in the relationship
between the passed time x (in seconds) and the distance of fall y (in metres).
The graph was created on the basis of the measured values.

1 2 3

10

20

30

40

50

x

y

y = 5x2

bc

bc

bc

What is the velocity of the stone at time (for instance) x = 2?
It seems obvious that at any given moment there is a velocity, but on
the other hand we understand the (average) velocity ∆v to be the
quotient of the distance moved and the time passed. For a calculation
therefore, in addition to x = 2 an further time is required.
The problem is that the speed determined in this way depends on the
choice of the second time point1.
By considering the sequence of approximations ∆v, we achieve the
velocity at the time x = 2.

x 2 3 2,1 2,01 2,001 2,0001 2,00001 . . .

y = 5x2 20 45 22,05 20,2005 20,020005 20,00200005 20,0002000005

∆v =
y−20
x−2 25 20,5 20,05 20,005 20,0005 20,00005

This procedure is typical for calculus.
Ultimately, (instantaneous) velocity, area, etc. are defined in this way.

20 = 20,000000000000
000000

000
00

00
00

00
0
00
00
00000000

↑ c© Roolfs

1Even if the 2. time is very close to 2, a blue coloured gradient triangle remains visible.
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↑ As another example, for the length of the arc of f(x) = x2 on the interval [0; 1]
an approximation sequence is determined, from which the first seven digits after the decimal point
of the limit are obtained.

b2 = 1,46040481 . . .

b4 = 1,47428047 . . .

b8 = 1,47777798 . . .

b16 = 1,47865168 . . .

b32 = 1,47887006 . . .

b64 = 1,47892466 . . .

b128 = 1,47893830 . . .

b256 = 1,47894172 . . .

b512 = 1,47894257 . . .

b1024 = 1,47894278 . . .

b2048 = 1,47894283 . . .

. . .

−→ 1,47894285 . . .

bn is the length of the stretch line
for n subdivisions.

1

1

f(x) = x2

x

y

Without justification, let us mention that this bounded, monotonically increasing sequence

has the limit

√
5

2
+

arcsinh(2)

4
.

A sequence a1, a2, a3, a4, . . .
can be transformed into an infinite sum with unchanged limit behaviour:

a1 + (a2 − a1)
︸ ︷︷ ︸

a2

+(a3 − a2)

︸ ︷︷ ︸

a3

+(a4 − a3)

︸ ︷︷ ︸

a4

+ . . .

An infinite sum thus includes the sequence (an) of the sums of the first n
summands (partial sums).

ex = lim
n→∞

(1 + x
n)

n

ex = 1 +
x

1!
+

x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
+ . . .

sinx =
x

1!
− x3

3!
+

x5

5!
− x7

7!
+− . . .

cos x = 1− x2

2!
+

x4

4!
− x6

6!
+− . . .

In this preferred manner, certain real numbers are grasped.

9



For all practical calculations, only computable real numbers are used (any number of digits can be
determined). They form their own number range (countable field). It requires more effort to specify
non-computable real numbers. The knowledge about this, as well as considerations about the
magnitude, are of theoretical nature and irrelevant for applications. The existence of a supremum for
bounded sets, which is necessary for a complete structure of calculus, has been shown.

10



↑ Limit of a geometric series

s = 1− 1

2
+

1

4
− 1

8
+

1

16
− 1

32
± . . .

s1 = 1

s2 = 0,5

s3 = 0,75

s4 = 0,625

s5 = 0,6875

s6 = 0,65625

s7 = 0,671875

s8 = 0,6640625

s9 = 0,66796875

s10 = 0,66601562 . . .

s11 = 0,66699219 . . .

s12 = 0,66650391 . . .

s13 = 0,66674805 . . .

s14 = 0,66662598 . . .

s15 = 0,66668701 . . .

s16 = 0,66665649 . . .

s17 = 0,66667175 . . .

s18 = 0,66666412 . . .

s19 = 0,66666794 . . .

s20 = 0,66666603 . . .

s21 = 0,66666698 . . .

s22 = 0,66666651 . . .

s23 = 0,66666675 . . .

s24 = 0,66666663 . . .

. . .

−→ 0,66666666 . . . =
2

3

sn is the sum of the first n summands.

The convergent series (see interval nesting) defines a real number s, the limit.
s is approximated arbitrarily exactly by sn. The approximations sn produce the real number s.
A convergent series (sequence) and its limit are to be considered as a unity.

↑ c© Roolfs
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↑ 0,999999 . . . = 1

0,999999999999
999999

999
99

99
99

99
9
99
99
99999999

Numbers whose digits finally consist only of the 9 have a second representation.

x = 0,999 . . .

10x = 9 + 0,999 . . .

9x = 9
1

9
= 0,1111 . . . | · 9

x = 1 1 = 0,9999 . . .

The proof can be even more elementary.

0,9 is generated by the sequence

a1 = 0,9

a2 = 0,99

a3 = 0,999

a4 = 0,9999

a5 = 0,99999

a6 = 0,999999

. . .
and

1− 0,9 by

d1 = 0,1

d2 = 0,01

d3 = 0,001

d4 = 0,0001

d5 = 0,00001

d6 = 0,000001

. . .

−→ 0,000000 . . . = 0

↑ c© Roolfs
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↑ Infinite series Telescope sum

∞∑

k=1

1

k(k + 1)
=

1

1 · 2 +
1

2 · 3 +
1

3 · 4 + . . . = 1

1

k(k + 1)
=

1

k
− 1

k + 1

sn =
n∑

k=1

1

k(k + 1)
=

(

1− 1

2

)

+
(
1

2
− 1

3

)

+
(
1

3
− 1

4

)

+ . . .+
(
1

n
− 1

n+ 1

)

= 1− 1

n+ 1

The sum term for sn is considerably simplified by parentheses. The limit
of the infinite series is reduced to the limit of the number sequence sn:

∞∑

k=1

1

k(k + 1)
= lim

n→∞

sn = 1

en =
n∑

k=0

1

k!
= 1 + 1 +

1

1 · 2 +
1

1 · 2 · 3 +
1

1 · 2 · 3 · 4 + . . . +
1

n!

≤ 1 + 1 +
(1

2

)1
+
(1

2

)2
+

(1

2

)3
++ . . .+

(1

2

)n−1

,
1

ℓ
≤ 1

2
für ℓ ≥ 2

= 1 +
1−

(1

2

)n

1− 1

2

= 1 + 2−
(1

2

)n−1

< 3 mit q =
1

2

Thus the sequence en is bounded upwards and obviously monotonically increasing, lim
n→∞

= e.

Improved estimation

en ≤ 1 + 1 +
1

2
+

1

2
·
(1

3

)1
+

1

2
·
(1

3

)2
+

1

2
·
(1

3

)3
+ . . . +

1

2
·
(1

3

)n−2

,
1

ℓ
≤ 1

3
für ℓ ≥ 3

= 1 + 1 +
1

2
·
1−

(1

3

)n−1

1− 1

3

= 1 + 1 +
3

4
− 1

4
·
(1

3

)n−2

< 2,75 mit q =
1

3
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↑ Historical

The decadic number system is of Indian origin and was adopted by Arab scholars around 800.
The Flemish mathematician and engineer Simon Stevin 1548-1620 showed the advantages of calcu-
lating with decimals so that their use finally became established in the 16th century. John Napier
used the decimal point notation in 1617.
René Descartes 1596-1650 and Pierre de Fermat 1607-1665 introduced the coordinate system around
1637, thus combining geometry and algebra for the first time. On the (continuous) number line, by
defining a unit distance (unit of coordinates) a number is assigned to each point in a reversible and
unambiguous way. The real numbers are called the continuum.
In contrast to Dedekind and Cauchy, Weierstrass 1815-1897 used infinite decimal representations in
his lectures for the construction of R.1 There are several novel realisations of this idea. Addition and
multiplication have to be defined, the rules and completeness must be proved, see Blatter or Singh.

↑ c© Roolfs

1Decimal numbers d0, d1d2d3 . . . were interpreted as (sometimes finite) set { d0
100

,
d1
101

,
d2
102

, . . .}.
This definition was further extended (numerator and denominator could be any natural numbers).

As transcripts indicate, his students were probably unable to follow him in his further presentations.
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Grenzwert, siehe auch letzte Seite: Zusammengefasst
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