1. Real numbers \mathbb{R}
2. Addition in \mathbb{R}
3. Sequence for e
4. Supremum/Infimum
5. Limit
6. Cauchy sequence
7. Visualisation
8. Calculus
9. Arc length
10. Limit of a geometric series
11. $0,999999 \ldots=1$
12. Infinite series Telescope sum
13. Historical

\uparrow Real numbers \mathbb{R}

The diagonal length of a square with side length 1 is exactly $\sqrt{2}$ length unit.

$$
\sqrt{2}=1,414213562373095048801688724209698078569671875376948073176679737990732 \ldots
$$

We can consider $\sqrt{2}$ as a number with an infinite number of digits after the decimal point. This idea is facilitated if we remember that we can easily speak of the infinite set of natural numbers \mathbb{N}.

```
0,101001000100001000001 ...
1/7=0,142857142857142857142857142857142857\ldots periodical
```

All $0 / 1 / 2 / 3 \ldots / 9$-sequences preceded by $a, \ldots(a \in \mathbb{Z})$ form the set of real numbers. Numbers are virtual, they only exist in our mind. Therefore, this construction is possible. Real numbers that consist only of zeros from a position on (which can be omitted) are the finite decimal numbers. The real numbers are necessary because in theory there should be no limits of accuracy. But how are these infinite decimal numbers added and multiplied?

As an example we calculate π^{2}.

```
    \(\pi=3,141592653589793238462643383279502884197169399375105820974944592307816 \ldots\)
    \(\pi \in[3,1415 ; 3,1416]\)
\(\pi^{2} \in\left[3,1415^{2} ; 3,1416^{2}\right]\)
\(\pi^{2} \in[9,86902225 ; 9,86965056]\)
\(\pi^{2}=9,869 \ldots\)
```

next step
$\pi \in[3,14159 ; 3,14160]$
$\pi^{2} \in\left[3,14159^{2} ; 3,14160^{2}\right]$
$\pi^{2} \in[9,8695877281 ; 9,86965056]$
$\pi^{2}=9,869 \ldots$ has been of no use
next step
$\pi \in[3,141592 ; 3,141593]$
$\pi^{2} \in\left[3,141592^{2} ; 3,141593^{2}\right]$
$\pi^{2} \in[9,869600294464 ; 9,869606577649]$
$\pi^{2}=9,86960 \ldots$
and so on.

We imagine that with this interval nesting to the decimal number approximations $(\in \mathbb{Q})$ of π successively the valid decimal digits of $\pi^{2}=9,869604401089358618834490999876151135313699407240790626413349376220042 \ldots$
emerge. In fact, we have sketched out the idea of how multiplication (analogous to addition) can be done, so that terms like $3 \pi, 4 \sqrt{5}, \sqrt{2}+\sqrt{7}$ are being explained.

\uparrow Addition in \mathbb{R}

As an example we calculate $\sqrt{2}+\sqrt{7}$.

$$
\begin{aligned}
\sqrt{2} & =1,4142135623730950488 \ldots \\
\sqrt{7} & =2,6457513110645905905 \ldots \\
\sqrt{2} & \in[1,4142 ; 1,4143] \\
\sqrt{7} & \in[2,6457 ; 2,6458] \\
\sqrt{2}+\sqrt{7} & \in[4,0599 ; 4,0601] \\
\sqrt{2}+\sqrt{7} & =4,0 \ldots
\end{aligned}
$$

next step

$$
\begin{aligned}
\sqrt{2} & \in[1,41421 ; 1,41422] \\
\sqrt{7} & \in[2,64575 ; 2,64576] \\
\sqrt{2}+\sqrt{7} & \in[4,05996 ; 4,05998] \\
\sqrt{2}+\sqrt{7} & =4,0599 \ldots
\end{aligned}
$$

next step

$$
\begin{aligned}
\sqrt{2} & \in[1,414213 ; 1,414214] \\
\sqrt{7} & \in[2,645751 ; 2,645752] \\
\sqrt{2}+\sqrt{7} & \in[4,059964 ; 4,059966] \\
\sqrt{2}+\sqrt{7} & =4,05996 \ldots
\end{aligned}
$$

and so on.
With this interval nesting emerge to the decimal number approximations of $\sqrt{2}$ und $\sqrt{7}$ successively the valid digits of $\sqrt{2}+\sqrt{7}$. To put it more elegantly:
The sum is the supremum (see page 4) of all left (monotonically increasing) interval boundaries, and the infimum of all right-hand interval boundaries.
$\sqrt{2}=1,4142135623730550$
$\sqrt{7}=2,645751311064595090{ }^{201}$
$\sqrt{2}+\sqrt{7}=4,0599648734376855^{399^{2}}$

The unbiased handling of real numbers as infinite decimal numbers facilitates access to limit considerations, which becomes necessary from the 11th grade onwards. The alternative, „elegant" construction with Cauchy sequences or Dedekind cuts is reserved for the study of mathematics. This approach is more advanced, but by no means more „rigorous". In an axiomatic introduction of the real numbers, for didactic reasons, the reference to infinite decimal numbers, as well as the simple calculation of the supremum (next page) for limited sets should not be missing.

Of a real number only an initial part is visible, but in principle of arbitrary length (even if this can require considerable effort).

Considering the table,
it is reasonable to assume that the (monotone) sequence $a_{n}=\left(1+\frac{1}{n}\right)^{n}$ converges 1.
As n increases, more and more valid decimal digits result ${ }^{2}$.

n	$\left(1+\frac{1}{n}\right)^{n}$
10^{1}	$2,59374246 \ldots$
10^{2}	$2,70481382 \ldots$
10^{3}	$2,71692393 \ldots$
10^{4}	$2,71814592 \ldots$
10^{5}	$2,71826823 \ldots$
10^{6}	$2,71828046 \ldots$
10^{7}	$2,71828169 \ldots$
10^{8}	$2,71828181 \ldots$

Due to $\operatorname{Euler}(1707-1783)$ the $\operatorname{limit} \lim _{n \rightarrow \infty} a_{n}$ is called e (e from exponential).
e is of great importance in calculus because of $\left(e^{x}\right)^{\prime}=e^{x}$.
The numbers in this sequence are rational.
The example proves the connection between limit values and real numbers.

$e=2,7182818284590452^{233^{3}}$

[^0]\qquad
\uparrow

\uparrow Supremum/Infimum

The supremum of a set of numbers is the smallest upper bound.
The infimum of a set of numbers is the largest lower bound.

The following six statements are equivalent and characterise therefore equally the completeness of the real numbers:

1. Interval nesting principle
2. Every non-empty upper bounded subset of \mathbb{R} has a supremum.
3. Every non-empty lower bounded subset of \mathbb{R} has an infimum.
4. Every Cauchy sequence converges against a real number.
5. Each bounded sequence has an accumulation point (Bolzano-Weierstraß).
6. Every monotonically increasing upward bounded sequence converges.

Interval nesting principle
Let $\left(I_{n}\right)$ be a sequence of closed, bounded intervals with the properties
(1) $\quad I_{1} \supseteq I_{2} \supseteq \ldots$, and
(2) the diameters of I_{n} tend towards 0 .

Then there is exactly one real number a that lies in each interval I_{n}.

Let A be a non-empty, upper bounded subset of positive numbers from \mathbb{R}.

Proof of the supremum

The numbers from A are of the form $a, a_{1} a_{2} a_{3} a_{4} \ldots, \quad a \in \mathbb{N}, a_{i} \in\{0,1,2,3,4,5,6,7,8,9\}$. In A there exists a number with a maximal.
Among all numbers $a, a_{1} a_{2} a_{3} a_{4} \ldots$ from A there exists a number with a_{1} maximal.
Among all numbers $a, a_{1} a_{2} a_{3} a_{4} \ldots$ from A there exists a number with a_{2} maximal.
Among all numbers $a, a_{1} a_{2} a_{3} a_{4} \ldots$ from A there exists a number with a_{3} maximal and so on.

Visual:

The Supremum $a, a_{1} a_{2} a_{3} a_{4} \ldots$ is like a minimal envelope that is wrapped on top of A.

For a Cauchy sequence, the following is true:

$$
\stackrel{\forall}{\forall>0} \quad \underset{n_{0} \in \mathbb{N}}{\exists} \stackrel{\forall}{m, n \geq n_{0}} \mid
$$

From a certain position $\left(n_{0}\right)$ the distance between the sequence elements is arbitrarily small.
From a certain position the sequence elements differ arbitrarily little of each other.

At 5.
Ongoing bisection of the interval (sequence limited!), whereby at least in one half there are infinitely many elements of the sequence, leads to an accumulation point.
\qquad
\uparrow
C Roolfs

\uparrow Limit

Examples:
$\sqrt{5}, \pi, 0,101001000100001 \ldots, \frac{1}{3}=0, \overline{3}$
Since a real number has infinite number of digits after the decimal point, it can be difficult to grasp, if it is not a root or is not periodic or does not have a pattern. Way out: With a convergent sequence, a real number can be defined, it is then called the limit of the sequence.
$a=0,101001000100001 \ldots$ is characterised by the sequence

$$
\begin{aligned}
a_{1} & =0,1 \\
a_{2} & =0,101 \\
a_{3} & =0,101001 \\
& \ldots
\end{aligned}
$$

The sequence elements are approximations for a. The further one proceeds in the sequence, the better the approximations will be, and the more valid digits will emerge of the limit.

The sequence converges to a, because for every (arbitrarily small) neighbourhood (it is a measure of the deviation) of a there is a position in the sequence, from which all further sequence members lie in the neighbourhood.

Definition

The sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ converges (strives) against the limit a, written $\lim _{n \rightarrow \infty} a_{n}=a$ or $a_{n} \rightarrow a$, if holds true

$$
\begin{aligned}
& \forall \quad \exists \quad \forall \quad\left|a_{n}-a\right|<\varepsilon \quad \text { or in another notation: } \\
& \varepsilon>0 \quad n_{0} \in \mathbb{N} n \geq n_{0} \\
& \forall \varepsilon>0 \quad \exists n_{0} \in \mathbb{N} \quad\left(n \geq n_{0} \Longrightarrow\left|a_{n}-a\right|<\varepsilon\right)
\end{aligned}
$$

A convergent sequence defines a real number (limit) from which any number of digits can be calculated. $\left|a_{n}-a\right|<\varepsilon$ means $a_{n}-\varepsilon<a<a_{n}+\varepsilon$.
For instance $\varepsilon=10^{-5}$, from the related n_{0} onwards (at least) the first 4 digits after the comma of a_{n} and a coincide,

$$
{ }_{-}, a_{n}^{1} a_{n}^{2} a_{n}^{3} a_{n}^{4}\left(a_{n}^{5}-1\right) \ldots<{ }_{-}, a^{1} a^{2} a^{3} a^{4} a^{5} \ldots<_{-}, a_{n}^{1} a_{n}^{2} a_{n}^{3} a_{n}^{4}\left(a_{n}^{5}+1\right) \ldots
$$

provided that the 5 th a_{n}-digits after the comma a_{n}^{5} is not 0 or 9 . If necessary, n is to be chosen larger. Otherwise, for instance $a=1,000001, a_{n}=0,9999$ and $\left|a_{n}-a\right|<10^{-5}$ is possible.

A sequence with the convergence behavior of the definition and computable n_{0} is an algorithm to compute a real number to an arbitrarily specified number of digits.
However, because of the ambiguity of the number representation, it must be more precise:
\ldots is an algorithm, to obtain an approximation for a real number with arbitrarily given (small) difference.

\uparrow Cauchy sequence

Every convergent sequence is a Cauchy sequence.
According to the condition, from a certain position onwards all sequence members lie in the $\varepsilon / 2$-environment of a. For these sequence elements the distance from each other must then be smaller than ε.

The reversal is more important.
Each Cauchy sequence has a limit.
A Cauchy sequence is bounded and therefore contains a convergent subsequence.
$\left|a_{m}-a_{n}\right|<\varepsilon$ means $a_{n}-\varepsilon<a_{m}<a_{n}+\varepsilon$.
That is, for $\varepsilon=10^{-k}$, starting from the related n_{0}, (at least) the first $k-1$ digits after the decimal point of a_{n} and a_{m} agree with each other. (for all $m>n$, provided the k th a_{n}-digit after the decimal point is not 0 or 9).
This ensures that the remaining sequence members are arbitrarily close to the subsequence.
Plausible: A Cauchy sequence thus defines a number (a limit) a.
The formal proof can be found in many calculus scripts.
illustrative:
Cauchy sequences are sequences whose fluctuations become arbitrarily small, which at some position begin to "tread water".

Epsilontic initially is a hurdle that unfortunately often has to be taken without being prepared.
Let us assume that the equality of two real numbers a and b is to be proved. This is not easy to do due to the infinitely many decimal digits. But if it were possible, for every $\varepsilon>0$ to verify the inequality $|b-a|<\varepsilon, a=b$ would have to hold.
Let us further assume that the number b is defined by a sequence a_{n}. Then for every $\varepsilon>0$ there would have to be an index n_{0}, so that for all further sequence elements $\left|a_{n}-a\right|<\varepsilon$ holds. Now the jump to the definition (Weierstrass 1815-1897) is not far:
The sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ converges against the limit a, written $\lim _{n \rightarrow \infty} a_{n}=a$, if applies:

$$
\underset{\varepsilon>0}{\forall} \underset{n_{0} \in \mathbb{N}}{\exists} \underset{n \geq n_{0}}{\forall}\left|a_{n}-a\right|<\varepsilon
$$

The sequence then defines the value a.
In the $\varepsilon-n_{0}$ proof n_{0} is to be represented as a function of ε, the notation $n_{0}(\varepsilon)$ makes this clear. It is not necessary to specify this function explicitly or to search for the smallest possible n_{0}. It is sufficient to show that for every $\varepsilon>0$ there is such a n_{0}. The $\varepsilon-n_{0}$ proof does not depend on large ε. If the $\varepsilon-n_{0}$ proof applies is valid for all $0<\varepsilon<\varepsilon_{0}$ with any $\varepsilon_{0}>0$, it is also valid for all $\varepsilon>0$. For convergence questions, the first sequence members are irrelevant. Finally, in the $\varepsilon-n_{0}$ proof, it does not matter whether is used $\left|a_{n}-a\right|<\varepsilon$ or $\left|a_{n}-a\right| \leq \varepsilon, n \geq n_{0}$ or $n>n_{0}$. All possible formulations are equivalent.

```
\uparrow


Such a graph only partially visualises the definition of the limit value \(\lim _{n \rightarrow \infty} a_{n}=a\).
The convergence condition states that for every (no matter how small) \(\varepsilon>0\) there exists an index \(n_{0}\), so that from the position \(n_{0}\) onwards (means for \(n \geq n_{0}\) ) all \(a_{n}\) lie in the interval \([a-\varepsilon, a+\varepsilon]\), the points \(\left(n, a_{n}\right)\) then lie in the \(\varepsilon\) strip.

For any \(\varepsilon>0\), the points \(\left(n, a_{n}\right)\) ultimately lie in the \(\varepsilon\)-strip.
Equivalent:
For each \(\varepsilon>0\), only finitely many points \(\left(n, a_{n}\right)\) lie outside the \(\varepsilon\) strip.

The graph only gives the relation for one \(\varepsilon\). By the condition: for each \(\varepsilon>0 \ldots\) a real number \(a\) is defined by the sequence. Unlimited further valid decimal digits of (here) \(2=1,9999 \ldots=2,0000 \ldots\) are created.
\[
\begin{aligned}
a_{100} & =1,742959 \\
a_{200} & =2,005546 \\
a_{300} & =1,999985 \\
a_{400} & =1,999998 \\
a_{425} & =1,9999996 \\
a_{450} & =2,00000006
\end{aligned}
\]
```

\uparrow_ © Roolfs

```

\section*{\(\uparrow\) Calculus}

We imagine dropping a stone from a high rise building and are interested in the relationship between the passed time \(x\) (in seconds) and the distance of fall \(y\) (in metres). The graph was created on the basis of the measured values.

What is the velocity of the stone at time (for instance) \(x=2 ?\) It seems obvious that at any given moment there is a velocity, but on the other hand we understand the (average) velocity \(\Delta v\) to be the quotient of the distance moved and the time passed. For a calculation therefore, in addition to \(x=2\) an further time is required.
The problem is that the speed determined in this way depends on the choice of the second time point \({ }^{1}\).
By considering the sequence of approximations \(\Delta v\), we achieve the
 velocity at the time \(x=2\).
\begin{tabular}{l|c|c|c|c|c|c|c|c|}
\(x\) & 2 & 3 & 2,1 & 2,01 & 2,001 & 2,0001 & 2,00001 & \(\ldots\) \\
\hline\(y=5 x^{2}\) & 20 & 45 & 22,05 & 20,2005 & 20,020005 & 20,00200005 & 20,0002000005 & \\
\hline\(\Delta v=\frac{y-20}{x-2}\) & & 25 & 20,5 & 20,05 & 20,005 & 20,0005 & 20,00005 &
\end{tabular}

This procedure is typical for calculus.
Ultimately, (instantaneous) velocity, area, etc. are defined in this way.

\section*{\(20=20,00000000000000000 \times 1\)} \(\uparrow\)

\footnotetext{
\({ }^{1}\) Even if the 2 . time is very close to 2 , a blue coloured gradient triangle remains visible.
}
\(\uparrow\) As another example, for the length of the arc of \(f(x)=x^{2}\) on the interval \([0 ; 1]\) an approximation sequence is determined, from which the first seven digits after the decimal point of the limit are obtained.
\[
\begin{aligned}
& b_{2}=1,46040481 \ldots \\
& b_{4}=1,47428047 \ldots \\
& b_{8}=1,47777798 \ldots \\
& b_{16}=1,47865168 \ldots \\
& b_{32}=1,47887006 \ldots \\
& b_{64}=1,47892466 \ldots \\
& b_{128}=1,47893830 \ldots \\
& b_{256}=1,47894172 \ldots \\
& b_{512}=1,47894257 \ldots \\
& b_{1024}=1,47894278 \ldots \\
& b_{2048}=1,47894283 \ldots \\
& \cdots \\
& \longrightarrow
\end{aligned}
\]
\(b_{n}\) is the length of the stretch line for \(n\) subdivisions.


Without justification, let us mention that this bounded, monotonically increasing sequence has the limit \(\frac{\sqrt{5}}{2}+\frac{\operatorname{arcsinh}(2)}{4}\).

A sequence \(a_{1}, a_{2}, a_{3}, a_{4}, \ldots\)
can be transformed into an infinite sum with unchanged limit behaviour:


An infinite sum thus includes the sequence \(\left(a_{n}\right)\) of the sums of the first \(n\) summands (partial sums).
\[
\begin{aligned}
& e^{x}=\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n} \\
& e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+\ldots \\
& \sin x=\frac{x}{1!}-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+-\ldots \\
& \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots
\end{aligned}
\]

In this preferred manner, certain real numbers are grasped.

For all practical calculations, only computable real numbers are used (any number of digits can be determined). They form their own number range (countable field). It requires more effort to specify non-computable real numbers. The knowledge about this, as well as considerations about the magnitude, are of theoretical nature and irrelevant for applications. The existence of a supremum for bounded sets, which is necessary for a complete structure of calculus, has been shown.

\section*{\(\uparrow\) Limit of a geometric series}
\[
\begin{aligned}
& s=1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32} \pm \ldots \\
& s_{1}=1 \\
& s_{2}=0,5 \\
& s_{3}=0,75 \\
& s_{4}=0,625 \\
& s_{5}=0,6875 \\
& s_{6}=0,65625 \\
& s_{7}=0,671875 \\
& s_{8}=0,6640625 \\
& s_{9}=0,66796875 \\
& s_{10}=0,66601562 \ldots \\
& s_{11}=0,66699219 \ldots \\
& s_{12}=0,66650391 \ldots \\
& s_{13}=0,66674805 \ldots \\
& s_{14}=0,66662598 \ldots \\
& s_{15}=0,66668701 \ldots \\
& s_{16}=0,66665649 \ldots \\
& s_{17}=0,66667175 \ldots \\
& s_{18}=0,66666412 \ldots \\
& s_{19}=0,66666794 \ldots \\
& s_{20}=0,66666603 \ldots \\
& s_{21}=0,66666698 \ldots \\
& s_{22}=0,66666651 \ldots \\
& s_{23}=0,66666675 \ldots \\
& s_{24}=0,66666663 \ldots \\
& \ldots \\
& \longrightarrow 0,66666666 \ldots=\frac{2}{3} \\
& \hline
\end{aligned}
\]
\(s_{n}\) is the sum of the first \(n\) summands.

The convergent series (see interval nesting) defines a real number \(s\), the limit. \(s\) is approximated arbitrarily exactly by \(s_{n}\). The approximations \(s_{n}\) produce the real number \(s\). A convergent series (sequence) and its limit are to be considered as a unity.

\footnotetext{
\(\uparrow\)
(C) Roolfs
}
\(\uparrow 0,999999 \ldots=1\)

\section*{\(0,99999999999999999{ }^{90}\)}

Numbers whose digits finally consist only of the 9 have a second representation.
\[
\begin{aligned}
x & =0,999 \ldots \\
10 x & =9+0,999 \ldots \\
9 x & =9 \\
x & =1
\end{aligned}
\]
\[
\begin{aligned}
& \frac{1}{9}=0,1111 \ldots \quad \mid \cdot 9 \\
& 1=0,9999 \ldots
\end{aligned}
\]

The proof can be even more elementary.
\(0, \overline{9}\) is generated by the sequence
\[
\begin{aligned}
& a_{1}=0,9 \\
& a_{2}=0,99 \\
& a_{3}=0,999 \\
& a_{4}=0,9999 \\
& a_{5}=0,99999 \\
& a_{6}=0,999999 \\
& \ldots \\
& \text { and } \\
& 1-0, \overline{9} \text { by } \\
& d_{1}=0,1 \\
& d_{2}=0,01 \\
& d_{3}=0,001 \\
& d_{4}=0,0001 \\
& d_{5}=0,00001 \\
& d_{6}=0,000001 \\
& \ldots \\
& \longrightarrow 0,000000 \ldots=0
\end{aligned}
\]
\[
\begin{aligned}
& \sum_{k=1}^{\infty} \frac{1}{k(k+1)}=\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\ldots=1 \\
& \frac{1}{k(k+1)}=\frac{1}{k}-\frac{1}{k+1} \\
& s_{n}=\sum_{k=1}^{n} \frac{1}{k(k+1)}=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\ldots+\left(\frac{1}{n}-\frac{1}{n+1}\right) \\
& \quad=1-\frac{1}{n+1}
\end{aligned}
\]

The sum term for \(s_{n}\) is considerably simplified by parentheses. The limit of the infinite series is reduced to the limit of the number sequence \(s_{n}\) :
\[
\sum_{k=1}^{\infty} \frac{1}{k(k+1)}=\lim _{n \rightarrow \infty} s_{n}=1
\]
\[
\begin{aligned}
e_{n}=\sum_{k=0}^{n} \frac{1}{k!} & =1+1+\frac{1}{1 \cdot 2}+\frac{1}{1 \cdot 2 \cdot 3}+\frac{1}{1 \cdot 2 \cdot 3 \cdot 4}+\ldots+\frac{1}{n!} & & \\
& \leq 1+1+\left(\frac{1}{2}\right)^{1}+\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{3}++\ldots+\left(\frac{1}{2}\right)^{n-1} & & \frac{1}{\ell} \leq \frac{1}{2} \text { für } \ell \geq 2 \\
& =1+\frac{1-\left(\frac{1}{2}\right)^{n}}{1-\frac{1}{2}}=1+2-\left(\frac{1}{2}\right)^{n-1}<3 & & \text { mit } q=\frac{1}{2}
\end{aligned}
\]

Thus the sequence \(e_{n}\) is bounded upwards and obviously monotonically increasing, \(\lim _{n \rightarrow \infty}=e\).

Improved estimation
\[
\begin{aligned}
e_{n} & \leq 1+1+\frac{1}{2}+\frac{1}{2} \cdot\left(\frac{1}{3}\right)^{1}+\frac{1}{2} \cdot\left(\frac{1}{3}\right)^{2}+\frac{1}{2} \cdot\left(\frac{1}{3}\right)^{3}+\ldots+\frac{1}{2} \cdot\left(\frac{1}{3}\right)^{n-2}, & & \frac{1}{\ell} \leq \frac{1}{3} \text { für } \ell \geq 3 \\
& =1+1+\frac{1}{2} \cdot \frac{1-\left(\frac{1}{3}\right)^{n-1}}{1-\frac{1}{3}}=1+1+\frac{3}{4}-\frac{1}{4} \cdot\left(\frac{1}{3}\right)^{n-2}<2,75 & & \text { mit } q=\frac{1}{3}
\end{aligned}
\]

\section*{\(\uparrow\) Historical}

The decadic number system is of Indian origin and was adopted by Arab scholars around 800. The Flemish mathematician and engineer Simon Stevin 1548-1620 showed the advantages of calculating with decimals so that their use finally became established in the 16th century. John Napier used the decimal point notation in 1617.
René Descartes 1596-1650 and Pierre de Fermat 1607-1665 introduced the coordinate system around 1637 , thus combining geometry and algebra for the first time. On the (continuous) number line, by defining a unit distance (unit of coordinates) a number is assigned to each point in a reversible and unambiguous way. The real numbers are called the continuum.
In contrast to Dedekind and Cauchy, Weierstrass 1815-1897 used infinite decimal representations in his lectures for the construction of \(\mathbb{R} .{ }^{1}\) There are several novel realisations of this idea. Addition and multiplication have to be defined, the rules and completeness must be proved, see Blatter or Singh.

\section*{\(\uparrow\)}
\({ }^{1}\) Decimal numbers \(d_{0}, d_{1} d_{2} d_{3} \ldots\) were interpreted as (sometimes finite) set \(\left\{\frac{d_{0}}{10^{0}}, \frac{d_{1}}{10^{1}}, \frac{d_{2}}{10^{2}}, \ldots\right\}\).
This definition was further extended (numerator and denominator could be any natural numbers).
As transcripts indicate, his students were probably unable to follow him in his further presentations.

Reelle Zahlen 11. Jg.
Grenzwert, siehe auch letzte Seite: Zusammengefasst
Startseite```


[^0]:    ${ }^{1}$ The sequence is bounded. With the monotony follows the convergence (against the supremum, theorem of analysis).
    ${ }^{2}$ The proof which decimal digits are valid can be done with an interval nesting.

