ANALYSIS 1

I. 1 Funktionenschar exponentieller Funktionen

Gegeben ist die Funktionenschar f_{n} mit:

$$
f_{n}(x)=\frac{3 \cdot \mathrm{e}^{x}}{\left(1+\mathrm{e}^{x}\right)^{n}}, n \in \mathbb{N}, x \in \mathbb{R} .
$$

a) Die nebenstehende Abbildung zeigt die Graphen für drei Funktionen dieser Schar. Bestimmen Sie die Zahlenwerte des Parameters n für die jeweilige Funktion.
Verwenden Sie dazu die
Schnittpunkte der Graphen mit der y-Achse und beachten Sie, dass n eine natürliche Zahl ist.
b) Untersuchen Sie die Funktionen der Schar auf ihr Verhalten für $x \rightarrow \infty$ und $x \rightarrow-\infty$.
c) Weisen Sie nach, dass F_{n} mit
$F_{n}(x)=\frac{3 \cdot\left(1+e^{x}\right)^{1-n}}{1-n}$
für jedes $n \in \mathbb{N}, n \neq 1$, eine Stammfunktion der Funktion f_{n} ist.
d) Bestimmen Sie den Inhalt der Fläche zwischen den Graphen der Funktionen f_{2} und f_{3} im gesamten Bereich $x<0$.
Hinweis: Sie können verwenden, dass keine zwei Funktionen der Schar einen gemeinsamen Punkt haben.
e) Zeigen Sie,

- dass der Graph von f_{2} symmetrisch zur y-Achse ist
- dass der Graph von f_{1} punktsymmetrisch zu seinem Schnittpunkt mit der y-Achse ist.

Erwartungshorizont

	Lösungsskizze	Zuordnung, Bewertung		
		I	II	III
a)	Berechnung der Nullwerte: $\begin{array}{ll} n=1: & f_{1}(0)=\frac{3 \cdot e^{0}}{\left(1+e^{0}\right)^{1}}=\frac{3}{2}=1,5 \\ n=2: & f_{2}(0)=\frac{3 \cdot e^{0}}{\left(1+e^{0}\right)^{2}}=\frac{3}{4}=0,75 \\ n=3: & f_{3}(0)=\frac{3 \cdot e^{0}}{\left(1+e^{0}\right)^{3}}=\frac{3}{8}=0,375 \\ n=4: & f_{4}(0)=\frac{3 \cdot e^{0}}{\left(1+e^{0}\right)^{4}}=\frac{3}{16}=0,1875 \\ n=5: & f_{5}(0)=\frac{3 \cdot e^{0}}{\left(1+e^{0}\right)^{5}}=\frac{3}{32}=0,09375 \end{array}$ Dargestellt sind (von oben nach unten) die Graphen der Funktionen $f_{1}(x)$, $f_{2}(x)$ und $f_{4}(x)$. oder: Der Grafik werden die Nullwerte der drei Graphen entnommen: 1,5, 0,75 und (etwa) 0,2. Diese werden in die Funktionsgleichung eingesetzt: $\begin{aligned} & f_{n}(0)=\frac{3}{(1+1)^{n}}=1,5 \quad \Leftrightarrow \quad 2^{n}=2 \quad \Leftrightarrow \quad n=1 \\ & f_{n}(0)=\frac{3}{(1+1)^{n}}=0,75 \quad \Leftrightarrow \quad 2^{n}=4 \quad \Leftrightarrow \quad n=2 \\ & f_{n}(0)=\frac{3}{(1+1)^{n}} \approx 0,2 \quad \Leftrightarrow \quad 2^{n} \approx 15 \quad \Leftrightarrow \quad n \approx 4 \end{aligned}$ $f_{3}(0)=0,375$ und $f_{5}(0) \approx 0,09$, so dass die Ableseungenauigkeit hier keine Rolle spielen sollte.	15		
b)	Fallunterscheidung: $n=1: \quad f_{1}(x)=\frac{3 \cdot \mathrm{e}^{x}}{1+\mathrm{e}^{x}}$ Es gilt: $\lim _{x \rightarrow-\infty} f_{1}(x)=0$, da der Zähler gegen Null und der Nenner gegen 1 geht.			

	Lösungsskizze	Zuordnung, Bewertung		
		I	II	III
	Es gilt: $\lim _{x \rightarrow \infty} f_{1}(x)=3$, da für große x der Summand 1 im Nenner zu vernachlässigen ist. $n>1: \quad f_{n}(x)=\frac{3 \cdot \mathrm{e}^{x}}{\left(1+\mathrm{e}^{x}\right)^{n}} .$ Das Verhalten der Funktionen der Schar im Unendlichen kann man über das Wachstum von Zähler und Nenner untersuchen. Der Nenner lässt sich nach unten abschätzen durch $e^{n \cdot x}$, der ganze Bruch lässt sich dann nach oben abschätzen durch $\frac{3}{e^{(n-1) \cdot x}}$, so dass $\lim _{x \rightarrow \infty} f(x)=0$. $\lim _{x \rightarrow-\infty} f(x)=0$, da der Zähler gegen Null und der Nenner gegen 1 geht. Auch andere Argumentationen wie „der Zähler wächst mit e^{x}, während der Nenner mit $e^{x n}$ wächst" sind zulässig.	10	10	5
c)	F_{n} ist eine Stammfunktion, wenn $F_{n}^{\prime}(x)=f_{n}(x)$. $F_{n}(x)=\frac{3\left(1+\mathrm{e}^{x}\right)^{1-n}}{1-n}$, so dass für $F_{n}^{\prime}(x)$ folgt: $\begin{aligned} F_{n}^{\prime}(x) & =\frac{3}{1-n} \cdot(1-n) \mathrm{e}^{x} \cdot\left(1+\mathrm{e}^{x}\right)^{-n} \\ & =f_{n}(x) . \end{aligned}$	5	10	
d)	Da f_{2} und f_{3} keinen gemeinsamen Punkt haben und f_{2} oberhalb von f_{3} liegt (siehe Aufgabenteil a), ergibt sich der gesuchte Flächeninhalt durch Integration der Differenz der Funktionsterme. $\begin{aligned} & \lim _{a \rightarrow-\infty} \int_{a}^{0}\left(f_{2}(x)-f_{3}(x)\right) d x=\lim _{a \rightarrow-\infty}\left[\frac{3\left(1+\mathrm{e}^{x}\right)^{1-2}}{1-2}-\frac{3\left(1+\mathrm{e}^{x}\right)^{1-3}}{1-3}\right]_{a}^{0} \\ & =\lim _{a \rightarrow-\infty}\left[\frac{3\left(1+\mathrm{e}^{0}\right)^{-1}}{-1}-\frac{3\left(1+\mathrm{e}^{0}\right)^{-2}}{-2}-\left(\frac{3\left(1+\mathrm{e}^{a}\right)^{-1}}{-1}-\frac{3\left(1+\mathrm{e}^{a}\right)^{-2}}{-2}\right)\right] \\ & =\lim _{a \rightarrow-\infty}\left[-1,5+0,375+3\left(1+\mathrm{e}^{a}\right)^{-1}-1,5\left(1+\mathrm{e}^{a}\right)^{-2}\right] \\ & =0,375 \end{aligned}$		20	
e)	- f_{2} ist symmetrisch zur y-Achse, wenn $f_{2}(x)=f_{2}(-x)$. Dazu führt man folgende Äquivalenzumformungen durch: $\begin{aligned} & f_{2}(x)=f_{2}(-x) \\ & \Leftrightarrow \frac{3 \cdot \mathrm{e}^{x}}{\left(1+\mathrm{e}^{x}\right)^{2}}=\frac{3 \cdot \mathrm{e}^{-x}}{\left(1+\mathrm{e}^{-x}\right)^{2}} \\ & \Leftrightarrow \frac{3 \cdot \mathrm{e}^{x}}{\left(1+\mathrm{e}^{x}\right)^{2}}=\frac{\left(\mathrm{e}^{x}\right)^{2} \cdot 3 \cdot \mathrm{e}^{-x}}{\left(\mathrm{e}^{x}\right)^{2} \cdot\left(1+\mathrm{e}^{-x}\right)^{2}} \end{aligned}$			

Lösungsskizze	Zuordnung, Bewertung		
	I	II	III
$\Leftrightarrow \frac{3 \cdot \mathrm{e}^{x}}{\left(1+\mathrm{e}^{x}\right)^{2}}=\frac{3 \cdot \mathrm{e}^{x}}{\left(\mathrm{e}^{x}+1\right)^{2}} \quad$ w.z.b.w. - f_{1} ist symmetrisch zu $(0 \mid 1,5)$, wenn $f_{1}(x)-1,5=-\left[f_{1}(-x)-1,5\right]$. Dazu führt man folgende Äquivalenzumformungen durch: $\begin{aligned} & f_{1}(x)-1,5=-\left[f_{1}(-x)-1,5\right] \\ & \Leftrightarrow f_{1}(x)=-f_{1}(-x)+3 \\ & \Leftrightarrow \frac{3 \cdot \mathrm{e}^{x}}{1+\mathrm{e}^{x}}=\frac{-3 \cdot \mathrm{e}^{-x}}{1+\mathrm{e}^{-x}}+3 \\ & \Leftrightarrow \frac{3 \cdot \mathrm{e}^{x}}{1+\mathrm{e}^{x}}=\frac{-3 \cdot \mathrm{e}^{-x}+3 \cdot\left(1+\mathrm{e}^{-x}\right)}{1+\mathrm{e}^{-x}} \\ & \Leftrightarrow \frac{3 \cdot \mathrm{e}^{x}}{1+\mathrm{e}^{x}}=\frac{3}{1+\mathrm{e}^{-x}} \\ & \Leftrightarrow \frac{3 \cdot \mathrm{e}^{x}}{1+\mathrm{e}^{x}}=\frac{3 \cdot \mathrm{e}^{x}}{\mathrm{e}^{x}+1} \text { w.z.b.w. } \end{aligned}$		10	15
Insgesamt 100 BWE	30	50	20

I. 2 Preispolitik

Hinweis: Für die zu zeichnenden Funktionsgraphen kann es sinnvoll sein, eine Wertetabelle zu erstellen. Alle Funktionsgraphen sind in einem gemeinsamen Koordinatensystem darzustellen.

Für einen Betrieb werden die Kosten in Abhängigkeit von der Absatzmenge x durch folgende Gesamtkostenfunktion 3. Grades dargestellt: $\quad K_{t}: K_{t}(x)=0,5 x^{3}-t x^{2}+30 x+25, t \in \mathbb{R}, \quad$ mit $D=\mathbb{R}_{0}^{+}$.
a) Für folgenden Aufgabenteil sei $\boldsymbol{t}=\boldsymbol{6}$.

Berechnen Sie den Wendepunkt der Funktion und bestimmen Sie das Krümmungsverhalten am Wendepunkt.

Bestimmen Sie den Ordinatenschnittpunkt und erläutern Sie dessen wirtschaftliche Bedeutung.
Zeigen Sie, dass es keine Extremwerte gibt, und erläutern Sie die wirtschaftliche Bedeutung dieses Sachverhaltes. Zeichnen Sie den Graphen der Kostenfunktion K_{6}.
b) Ermitteln Sie, für welche t die Kostenfunktion K_{t} keine Extremstellen hat.
c) Eine Marktanalyse hat ergeben, dass der Preis, der für die Produkte zu erzielen ist, durch eine lineare Preisabsatzfunktion beschrieben werden kann. Folgende beiden Punkte der Preisabsatzfunktion sind bekannt:

$$
A(2 \mid 36), \quad B(4 \mid 24)
$$

Bestimmen Sie die Gleichung der Preisabsatzfunktion p und die Gleichung der Erlösfunktion E. Zeigen Sie, dass die Erlösfunktion E ein Maximum besitzt und berechnen Sie den maximal zu erzielenden Erlös.

Zeichnen Sie den Graphen der Erlösfunktion E.
d) Zeigen Sie, dass die Gleichung der Gewinnfunktion G_{6} für $t=6$ wie folgt lautet:

$$
G_{6}(x)=-0,5 x^{3}+18 x-25
$$

Ermitteln Sie grafisch die Gewinnschwelle und die Gewinngrenze und berechnen Sie diese mit Hilfe eines geeigneten Näherungsverfahrens auf zwei Nachkommastellen gerundet.

Bestimmen Sie die gewinnmaximale Absatzmenge, den dazugehörigen maximalen Gewinn und den Preis, bei dem der maximale Gewinn erzielt wird.
Zeichnen Sie den Graphen der Gewinnfunktion G_{6}.

Erwartungshorizont

	Lösungsskizze	Zuordnung, Bewertung		
		I	II	III
a)	$\begin{aligned} & K_{6}(x)=0,5 x^{3}-6 x^{2}+30 x+25 \\ & K_{6}^{\prime}(x)=1,5 x^{2}-12 x+30 \\ & K_{6}^{\prime \prime}(x)=3 x-12 \\ & K_{6}^{\prime \prime \prime}(x)=3 \end{aligned}$ Wendepunkt: Eine hinreichende Bedingung lautet: $\quad K_{6}^{\prime \prime}(x)=0 \wedge K_{6}^{\prime \prime \prime}(x) \neq 0$ $\begin{aligned} & 3 x-12=0 \Leftrightarrow x=4 . \\ & K_{6}(4)=32-96+120+25=81 . \end{aligned}$ Da $K_{6}^{\prime \prime \prime}(4)=3 \neq 0$, ist $W(4 \mid 81)$ der Wendepunkt. Da für $x<4$ die 2 . Ableitung negative Werte annimmt, handelt es sich um einen Wendepunkt mit R-L-Krümmung. Dies kann aber ebenso aus dem positiven Leitkoeffizienten erschlossen werden. Ordinatenschnittpunkt: Bed.: $x=0: K_{6}(0)=25, S_{y}(0 \mid 25)$. Der Ordinatenschnittpunkt beschreibt die fixen Kosten, hier 25 Geldeinheiten, die konstanten Kosten des Unternehmens bei einer Produktion von 0 ME. Extremwerte: Eine hinreichende Bedingung lautet: $\quad K_{6}^{\prime}(x)=0 \wedge K_{6}^{\prime \prime}(x) \neq 0$ $\begin{aligned} 1,5 x^{2}-12 x+30 & =0 \\ x^{2}-8 x+20 & =0 \\ x_{1,2} & =4 \pm \sqrt{-4} \quad \notin \mathbb{R} \end{aligned}$ Die Gleichung hat keine reellen Lösungen, d.h. die Funktion K_{6} hat keine Extremwerte. Die Existenz eines Extremwertes bei der Kostenfunktion würde bedeuten, dass die Gesamtkosten in einem bestimmten Produktionsbereich bei wachsender Produktion sinken. Dieser Sachverhalt wäre unter wirtschaftlichen Gesichtspunkten nicht sinnvoll. oder: Die Funktion K_{6} ist (da der Leitkoeffizient positiv ist) monoton wachsend, d.h. eine Erhöhung der Produktion ist zwangsläufig mit einer Erhöhung der Kosten verbunden.			

	Lösungsskizze	Zuordnung, Bewertung		
		I	II	III
b)	$K_{t}^{\prime}(x)=1,5 x^{2}-2 t x+30$ Eine hinreichende Bedingung lautet: $\quad K_{t}^{\prime}(x)=0 \wedge K_{t}^{\prime \prime}(x) \neq 0$ $\begin{aligned} 1,5 x^{2}-2 t x+30 & =0 \\ x^{2}-\frac{4}{3} t x+20 & =0 \\ x_{1,2} & =\frac{2}{3} t \pm \sqrt{\frac{4}{9} t^{2}-20} \end{aligned}$ Ist die Diskriminante negativ, dann existieren keine (reellen) Lösungen und somit auch keine Extremstellen.. $\begin{aligned} \frac{4}{9} t^{2}-20 & <0 \\ t^{2} & <45 \end{aligned}$ Für $-\sqrt{45}<t<\sqrt{45}$ hat K_{t} keine Extremstellen.		10	5
c)	Preisabsatzfunktion p : $\begin{aligned} & p(x)=a \cdot x+b \\ & A(2 \mid 36): \quad 36=a \cdot 2+b \\ & B(4 \mid 24): \quad 24=a \cdot 4+b \end{aligned}$ Das Gleichungssystem hat die Lösung $a=-6 ; b=48$. Die Gleichung der Preisabsatzfunktion lautet: $p(x)=-6 x+48$. Erlösfunktion E: $\begin{aligned} E(x) & =p(x) \cdot x \\ & =(-6 x+48) \cdot x \\ & =-6 x^{2}+48 x \end{aligned}$ Nachweis eines Maximums: Die Nullstellen der Erlösfunktion lassen sich aus der faktorisierten Form des Funktionsterms direkt ablesen: $x_{1}=0$ und $x_{2}=8$. Wegen der Symmetrieeigenschaft einer Parabel mit negativem Leitkoeffizienten gilt: Die Erlösfunktion E hat ihr Maximum an der Stelle $x=4$. Bei 4 Mengeneinheiten beträgt der maximale Erlös 96 Geldeinheiten. Alternativ kann das Erlösmaximum auch über die ersten beiden Ableitungen E^{\prime} und $E^{\prime \prime}$ bestimmt werden.			

d)				
Lösungsskizze		\quad	Gewinnfunktion G_{6}	
---:	:---			
$G_{6}(x)$	$=E(x)-K(x)$			
	$=-6 x^{2}+48 x-\left(0,5 x^{3}-6 x^{2}+30 x+25\right)$			
	$=-0,5 x^{3}+18 x-25$			

Gewinnschwelle und Gewinngrenze:
Aus der grafischen Darstellung (siehe unten) lässt sich ablesen:
Gewinnschwelle bei $x \approx 1,5$ und Gewinngrenze bei $x \approx 5$.
Rechnerische Lösung:
$G_{6}(x)=-0,5 x^{3}+18 x-25$
$G_{6}^{\prime}(x)=-1,5 x^{2}+18$
Newton'sches Näherungsverfahren liefert:
Gewinnschwelle bei $x \approx 1,48$
Gewinngrenze bei $\quad x \approx 5,12$
(Auch Annäherung durch andere Verfahren ist hier möglich.)
Bestimmung der gewinnmaximalen Menge und des Gewinnmaximums:

$$
\begin{aligned}
G_{6}^{\prime}(x)= & -1,5 x^{2}+18=0 \\
x^{2}= & 12 \\
x_{1,2}= & \pm \sqrt{12} \\
& -\sqrt{12} \notin D \text { kommt als Lösung nicht in Frage. }
\end{aligned}
$$

$G_{6}^{\prime \prime}(\sqrt{12})=-3 \cdot \sqrt{12}<0$.
Wegen $G_{6}^{\prime}(\sqrt{12})=0 \underline{\text { und }} G_{6}^{\prime \prime}(\sqrt{12})<0$ hat die Funktion G_{6} an der Stelle $x=\sqrt{12} \approx 3,46$ ein Maximum.
$G_{6}(\sqrt{12}) \approx 16,57$.
$p(\sqrt{12})=-6 \cdot \sqrt{12}+48=27,215 \ldots$
Bei einer Produktion von 3,46 ME ist der Gewinn mit 16,57 GE maximal. Der zugehörige Preis beträgt 27,22 GE.
Grafische Darstellung am Ende der Lösungsskizze.

ANALYSIS 3

I. 3 Funktionenschar von gebrochen rationalen Funktionen

Für jedes $k \in \mathbb{R} \backslash\{0\}$ ist eine Funktion f_{k} mit $f_{k}(x)=\frac{k \cdot x}{x^{2}+k}, x \in D_{f_{k}}$, definiert.
a) Geben Sie den maximalen Definitionsbereich von f_{k} an und untersuchen Sie die Graphen von f_{k} auf

- Symmetrie
- Schnittpunkte mit den Koordinatenachsen
- Asymptoten (Geben Sie jeweils an, von welcher Seite sich die Graphen an die Asymptoten anschmiegen.)
Polstellen
- Extrem- und Wendepunkte.

Hinweis: Zeigen Sie dazu, dass $f_{k}^{\prime}(x)=\frac{k\left(k-x^{2}\right)}{\left(x^{2}+k\right)^{2}}$ ist.
b) Skizzieren Sie die Graphen von f_{1} und f_{-1} für $-6 \leq x \leq 6$ in ein gemeinsames Koordinatensystem mit der Längeneinheit 1 cm .
c) In der Nähe des Koordinatenursprungs sind die beiden Graphen aus Teil b) schwer zu unterscheiden.

- Weisen Sie nach, dass die beiden Graphen nur einen gemeinsamen Punkt haben.
- Zeigen Sie, dass der Abstand zwischen den Funktionswerten im Intervall $I=[0 ; 0,5]$ für wachsendes x immer größer wird.
d) Begründen Sie für jeden der Graphen in der Anlage, warum er nicht Graph einer Funktion f_{k} sein kann.
e) Der Graph von f_{1} schließt mit der x-Achse über dem Intervall [0; ∞ [eine Fläche ein. Entscheiden Sie, ob der Flächeninhalt endlich oder unendlich ist.

Anlage zur Aufgabe „Funktionenschar von gebrochen rationalen Funktionen", Teil d)

Graph 2

Graph 3

Graph 4

Erwartungshorizont

	Lösungsskizze
a)	Für $k>0$ gilt: $D_{f_{k}}=\mathbb{R}$; für $k<0$ gilt: $D_{f_{k}}=\mathbb{R} \backslash\{\sqrt{-k},-\sqrt{-k}\}$. Symmetrie:

Für jedes k ist der Graph symmetrisch zum Koordinatenursprung, denn es gilt: $f_{k}(-x)=\frac{-k \cdot x}{x^{2}+k}=-f_{k}(x)$.

Schnittpunkte mit den Achsen:

$f_{k}(x)=\frac{k \cdot x}{x^{2}+k}=0$, daraus folgt: $x=0$.
$f_{k}(0)=\frac{k \cdot x}{x^{2}+k}=0$.
Für jedes k werden die Achsen nur im Ursprung geschnitten.

Asymptoten:

Da für jedes k gilt: $\lim _{x \rightarrow \infty} f_{k}(x)=\lim _{x \rightarrow \infty} \frac{1}{x}=0$ und $\lim _{x \rightarrow-\infty} f_{k}(x)=\lim _{x \rightarrow-\infty} \frac{1}{x}=0$, ist die x-Achse für jeden der Graphen eine Asymptote.

Für $k>0$ schmiegen sich die Graphen für $x \rightarrow \infty$ von oben an die x-Achse an, für $x \rightarrow-\infty$ von unten.

Für $k<0$ schmiegen sich die Graphen für $x \rightarrow \infty$ von unten an die x-Achse an, für $x \rightarrow-\infty$ von oben.

Polstellen:

Nur für $k<0$ gibt es Pole, nämlich bei $-\sqrt{-k}$ und $\sqrt{-k}$.
Ableitungen:

$$
\begin{aligned}
f_{k}^{\prime}(x) & =\frac{k \cdot\left(x^{2}+k\right)-k \cdot x \cdot 2 x}{\left(x^{2}+k\right)^{2}}=\frac{k \cdot x^{2}+k^{2}-2 k \cdot x^{2}}{\left(x^{2}+k\right)^{2}}=\frac{k^{2}-k \cdot x^{2}}{\left(x^{2}+k\right)^{2}}=\frac{k\left(k-x^{2}\right)}{\left(x^{2}+k\right)^{2}} \\
f_{k}^{\prime \prime \prime}(x) & =\frac{-2 k \cdot x \cdot\left(x^{2}+k\right)^{2}-k\left(k-x^{2}\right) \cdot 2\left(x^{2}+k\right) \cdot 2 x}{\left(x^{2}+k\right)^{4}} \\
& =\frac{-2 k \cdot x \cdot\left(x^{2}+k\right)^{1}-k\left(k-x^{2}\right) \cdot 2 \cdot 2 x}{\left(x^{2}+k\right)^{3}} \\
& =\frac{-2 k \cdot x^{3}-2 k^{2} \cdot x-4 k^{2} \cdot x+4 k \cdot x^{3}}{\left(x^{2}+k\right)^{3}} \\
& =\frac{2 k \cdot x^{3}-6 k^{2} \cdot x}{\left(x^{2}+k\right)^{3}}=\frac{2 k x\left(x^{2}-3 k\right)}{\left(x^{2}+k\right)^{3}}
\end{aligned}
$$

Lösungsskizze	Zuordnung, Bewertung		
	I	II	III
Bestimmung der Extrema: $f_{k}^{\prime}(x)=0 \Leftrightarrow \frac{k\left(k-x^{2}\right)}{\left(x^{2}+k\right)^{2}}=0 \Leftrightarrow k\left(k-x^{2}\right)=0$ Nur für $k>0$ gibt es Nullstellen von $f_{k}^{\prime}:-\sqrt{k}$ und $\sqrt{k} \cdot f_{k}^{\prime \prime}(\sqrt{k})=\frac{2 k \cdot \sqrt{k}(k-3 k)}{(k+k)^{3}}<0 \text { für } k>0 .$ $f_{k}^{\prime \prime}(-\sqrt{k})=\frac{-2 k \cdot \sqrt{k}(k-3 k)}{(k+k)^{3}}>0$ für $k>0$. $f_{k}(\sqrt{k})=\frac{k \cdot \sqrt{k}}{k+k}=\frac{\sqrt{k}}{2}$ bzw. $f_{k}(-\sqrt{k})=\frac{-k \cdot \sqrt{k}}{k+k}=-\frac{\sqrt{k}}{2}$. Hochpunkte der Graphen: $\left(\sqrt{k} \left\lvert\, \frac{\sqrt{k}}{2}\right.\right)$, Tiefpunkte der Graphen: $\left(-\sqrt{k} \left\lvert\,-\frac{\sqrt{k}}{2}\right.\right)$. Andere Argumentationen ohne Betrachtung der 2. Ableitung sind möglich (z.B. über die Nullstelle im Ursprung und das asymptotische Verhalten: für $k>0$ schmiegen sich die Graphen für $x \rightarrow \infty$ von oben an die x-Achse an, für $x \rightarrow-\infty$ von unten). Bestimmung der Wendepunkte: Aufgrund der Punktsymmetrie ist der Koordinatenursprung für jedes k ein Wendepunkt. Damit: $W_{k, 1}(0 \mid 0)$. Nur für $k>0$ gibt es von Null verschiedene Nullstellen der zweiten Ableitung: $-\sqrt{3 k}$ und $\sqrt{3 k}$. Aus dem asymptotischen Verhalten folgt auch ohne die dritte Ableitung, dass es sich hierbei um Wendestellen handeln muss. Also: $W_{k, 2}\left(-\sqrt{3 k} \left\lvert\,-\frac{\sqrt{3 k}}{4}\right.\right), W_{k, 3}\left(\sqrt{3 k} \left\lvert\, \frac{\sqrt{3 k}}{4}\right.\right) .$	15	30	

		Zuordnung, Bewertung		
b)		I	II	III

	Lösungsskizze	Zuordnung, Bewertung		
		I	II	III
d)	Die Graphen 1 und 2 scheiden aus, z.B. da alle Graphen von f_{k} punktsymmetrisch zum Ursprung sind. Da Graph 3 keine Pole besitzt, müsste der Parameter k positiv sein. Dann jedoch schmiegt sich der Graph im ersten Quadranten der x-Achse an. Graph 4 besitzt eine schräge Asymptote. Dann müsste der Grad des Zählerterms größer als der des Nennerterms sein.		5	5
e)	$F_{k}(x)=\frac{k}{2} \cdot \ln \left(x^{2}+k\right)$ ist eine Stammfunktion von f_{k}. $\lim _{b \rightarrow \infty} \int_{0}^{b} f_{1}(x) d x=\lim _{b \rightarrow \infty}\left[\frac{1}{2} \cdot \ln \left(x^{2}+1\right)\right]_{0}^{b}=\lim _{b \rightarrow \infty}\left(\frac{1}{2} \cdot \ln \left(b^{2}+1\right)\right)$ Für $b \rightarrow \infty$ gilt: $\frac{1}{2} \cdot \ln \left(b^{2}+1\right) \rightarrow \infty$. Also ist der Flächeninhalt unendlich.		5	10
	Insgesamt 100 BWE	25	50	25

II. 1 Eckpyramide

Gegeben ist die Ebenenschar \boldsymbol{E}_{a} mit $\boldsymbol{E}_{a}:(1+a) \cdot x_{1}+a \cdot x_{2}+(a-1) \cdot x_{3}=a, \quad a \in \mathbb{R}$.
a) Beschreiben Sie die Lage von \boldsymbol{E}_{0}.
b) Zeigen Sie, dass die Gerade g mit $g: \vec{x}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)+k \cdot\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right), k \in \mathbb{R}$ in jeder der Ebenen \boldsymbol{E}_{a} liegt.
c) Mit S_{1}, S_{2} und S_{3} seien die Schnittpunkte der jeweiligen Ebene mit den Koordinatenachsen bezeichnet.

- Bestimmen Sie S_{1}, S_{2} und S_{3} in Abhängigkeit von a.
- Fassen Sie die Punkte S_{1}, S_{2} und S_{3} sowie den Koordinatenursprung O als Eckpunkte einer Pyramide auf, der so genannten Eckpyramide.
Zeigen Sie, dass für das Volumen V_{a} einer Eckpyramide gilt: $V_{a}=\frac{1}{6} \cdot\left|\overline{O S_{1}}\right| \cdot\left|\overline{O S_{2}}\right| \cdot\left|\overline{O S_{3}}\right|$.
- Bestimmen Sie diejenigen positiven a, bei denen die zugehörige Eckpyramide das Volumen 1 aufweist.
d) Welche Bedingung müssen die Parameter m und a zweier Ebenen \boldsymbol{E}_{m} und \boldsymbol{E}_{a} dieser Schar erfüllen, damit diese beiden Ebenen senkrecht zueinander stehen? Begründen Sie.
Berechnen Sie für $a=2$ den Parameter m der zu \boldsymbol{E}_{2} senkrechten Ebene \boldsymbol{E}_{m}.
e) Bestimmen Sie die Ebenen aus der gegebenen Ebenenschar, die vom Ursprung O den Abstand 0,5 aufweisen.
f) Es wird das Volumen V_{a} der Eckpyramiden der Ebenenschar \boldsymbol{E}_{a} betrachtet.

Zeigen Sie:

- Für $a \rightarrow \pm \infty$ geht V_{a} gegen den Wert $\frac{1}{6}$.
- V_{a} hat ein Minimum, aber keine Maxima.

Erwartungshorizont

	Lösungsskizze	Zuordnung, Bewertung		
		I	II	III
a)	$\boldsymbol{E}_{0}: x_{1}-x_{3}=0$ Die Ebene enthält alle Punkte der Form $\left(a\left\|x_{2}\right\| a\right), a \in \mathbb{R}$. Also enthält die Ebene die x_{2}-Achse $(a=0)$ und insbesondere auch den Nullpunkt. Ihr Schnitt mit der $x_{1}-x_{3}$-Ebene ist die Gerade $x_{1}=x_{3}$, d. h. die Winkelhalbierende dieser Ebene.	10		
b)	Lösung z.B. über die Form von g mit dem allgemeinen Vektor: $g: \vec{x}=\left(\begin{array}{c}k \\ 1-2 k \\ k\end{array}\right), k \in \mathbb{R}$. Eingesetzt in die Koordinatenform von \boldsymbol{E}_{a} ergibt dies die Gleichung $(1+a) \cdot k+a \cdot(1-2 k)+(a-1) \cdot k=a$. Diese Gleichung vereinfacht sich zu der für alle a richtigen Beziehung $a=a$. Damit liegt g in jeder der Ebenen $\boldsymbol{E}_{\boldsymbol{a}}$.	10	5	
c)	Schnittpunkte $S_{1}\left(x_{S_{1}}\|0\| 0\right)$ Einsetzen in die Koordinatenform von \boldsymbol{E}_{a} ergibt $S_{1}\left(\frac{a}{a+1}\|0\| 0\right), a \neq-1$. Analog ergeben sich $S_{2}(0\|1\| 0)$ und $S_{3}\left(0\|0\| \frac{a}{a-1}\right), a \neq 1$. (Die Abschnitte ergeben sich selbstverständlich unmittelbar, wenn man die Koordinatenform in die Hesse-Form umwandelt: $\left.\boldsymbol{E}_{a}: \frac{1}{\frac{a}{1+a}} \cdot x_{1}+\frac{1}{1} \cdot x_{2}+\frac{1}{\frac{a}{a-1}} \cdot x_{3}=1 .\right)$ Die Ebene \boldsymbol{E}_{1} hat keinen Schnittpunkt mit der x_{3}-Achse, denn die x_{3}-Komponente ist gleich Null und das absolute Glied ungleich Null. Entsprechend schneidet die Ebene \boldsymbol{E}_{-1} die x_{1}-Achse nicht. (Nach Aufgabenteil a) schneidet die Ebene \boldsymbol{E}_{0} alle drei Achsen - im Nullpunkt.) Volumen der Eckpyramide: Das Volumen der von den Vektoren $\overrightarrow{O S_{1}}, \overrightarrow{O S_{2}}$ und $\overrightarrow{O S_{3}}$ aufgespannten dreiseitigen Pyramide ist $\frac{1}{6}$ des Volumens des von $\overrightarrow{\mathrm{OS}_{1}}, \overrightarrow{\mathrm{OS}_{2}}$ und $\overrightarrow{\mathrm{OS}_{3}}$ ausgespannten Spats, denn die Grundfläche der dreiseitigen Pyramide ist halb so groß wie die Grundfläche des Spats und eine Pyramide hat das Volumen ,, $\frac{1}{3}$ mal Grundfläche mal Höhe". Der Spat ist ein Quader mit den Seitenlängen $\left\|\overrightarrow{O S_{1}}\right\|,\left\|\overrightarrow{O S_{2}}\right\|$ und $\left\|\overrightarrow{O S_{3}}\right\|$, also berechnet sich das Spatvolumen als $\left\|\overrightarrow{O S_{1}}\right\| \cdot\left\|\overrightarrow{O S_{2}}\right\| \cdot\left\|\overrightarrow{O S_{3}}\right\|$. Beide Überlegungen zusammen ergeben die gesuchte Formel. (Hier sind natürlich auch Rechnungen möglich.)			

	Lösungsskizze	Zuordnung, Bewertung		
		I	II	III
	Eine andere Argumentation wäre die folgende: Die Eckpyramide hat am Ursprung drei Flächen, die paarweise senkrecht aufeinander stoßen. Damit ist ihr kleinster Umhüllungsquader der Quader mit den drei Kantenlängen $x_{S_{1}}, x_{S_{2}}$ und $x_{S_{3}}$. Dessen Volumen ist $V_{Q}=\left\|x_{S_{1}} \cdot x_{S_{2}} \cdot x_{S_{3}}\right\|$. Wählt man eine dieser Flächen als rechteckige Umhüllung der Grundfläche der Eckpyramide aus, so hat die Grundfläche der Eckpyramide als rechtwinkliges Dreieck mit den entsprechenden Seitenlängen genau die Hälfte des Inhalts des Rechtecks. Andererseits weist jede Pyramide als Volumen nur ein Drittel des Volumens des sie umhüllenden Prismas auf. Da $x_{S_{1}}=\left\|\overrightarrow{O S_{1}}\right\|$ (und entsprechend für die anderen Punkte), ergibt sich das gewünschte Resultat. Bestimmung der a-Werte: Für die Eckpyramide der Ebenen \boldsymbol{E}_{a} gilt (mit Einsetzen): $V_{a}=\frac{1}{6} \cdot\left\|\frac{a}{a+1}\right\| \cdot\left\|\frac{a}{a-1}\right\|$. Je nachdem, ob a >1 oder $0<\mathrm{a}<1$ gilt, ergeben sich die beiden Bestimmungsgleichungen für a : $1=\frac{1}{6} \cdot \frac{a^{2}}{a^{2}-1} \text { oder } 1=\frac{1}{6} \cdot \frac{a^{2}}{1-a^{2}} .$ Daraus ergeben sich die beiden Gleichungen $6-6 a^{2}=a^{2}$ oder $6 a^{2}-6=a^{2}$. Diese haben die positiven Lösungen $a_{1}=\sqrt{\frac{6}{7}} \wedge a_{2}=\sqrt{\frac{6}{5}}$.	5	25	
d)	Grundsätzlich gilt: Zwei Ebenen stehen genau dann senkrecht zueinander, wenn ihre Normalenvektoren orthogonal zueinander sind. Es gilt dabei $\overrightarrow{n_{m}}=\left(\begin{array}{c}1+m \\ m \\ m-1\end{array}\right)$ und $\overrightarrow{n_{a}}=\left(\begin{array}{c}1+a \\ a \\ a-1\end{array}\right)$. Die Orthogonalität ergibt die Gleichung $\overrightarrow{n_{m}} \cdot \overrightarrow{n_{a}}=0 \Leftrightarrow(1+m)(1+a)+m \cdot a+(m-1)(a-1)=0 .$ Dies führt zu der Bedingung $m \cdot a=-\frac{2}{3}$. Für $a=2$ liefert Einsetzen die Lösung $m=-\frac{1}{3}$.		15	

	Lösungsskizze
e)	Aus der Tafel folgt für den Abstand: $\operatorname{dis}_{a}=\left\|\left(\overrightarrow{0}-\vec{v}_{0}\right) \cdot \vec{n}_{0}\right\|$, wobei \vec{v}_{0} ein beliebiger Punkt der Ebene ist und \vec{n}_{0} ist der Normaleneinheitsvektor der Ebene. $\begin{aligned} \operatorname{dis}_{a} & =\left\|\vec{v}_{0} \cdot \frac{\vec{n}}{\|\vec{n}\|}\right\|=\left\|\frac{\vec{v}_{0} \cdot \vec{n}}{\|\vec{n}\|}\right\| \\ & =\left\lvert\, \frac{a}{\sqrt{(1+a)^{2}+a^{2}+(a-1)^{2}} \mid}(\text { (1) aufgrund der speziellen Koordinatengleichung }\right. \\ & =\left\|\frac{a}{\sqrt{2+3 a^{2}}}\right\| \end{aligned}$

Zu lösen sind die beiden Gleichungen $\frac{a}{\sqrt{2+3 a^{2}}}=0,5$ und $\frac{a}{\sqrt{2+3 a^{2}}}=-0,5$
Für die erste Gleichung folgt z.B.:
$\frac{a}{\sqrt{2+3 a^{2}}}=0,5$.
Durch Quadrieren ergibt sich
$\frac{a^{2}}{2+3 a^{2}}=\frac{1}{4}$
und weiter

$$
\begin{aligned}
4 a^{2} & =2+3 a^{2} \\
a^{2} & =2,
\end{aligned}
$$

also $\mathrm{a}=\sqrt{2}$ oder $\mathrm{a}=-\sqrt{2}$.
Durch Einsetzen erhält man, dass nur $a=\sqrt{2}$ Lösung der ersten Gleichung ist. Entsprechend erhält man die Lösung der zweiten Gleichung: $a=-\sqrt{2}$.

Hinweis: Schülerinnen und Schüler hätten auch gleich mit der Abstandsformel rechnen können.
Die Ebenen $\boldsymbol{E}_{\sqrt{2}}$ und $\boldsymbol{E}_{-\sqrt{2}}$ sind diejenigen, die vom Nullpunkt den Abstand 0,5 haben.

	Lösungsskizze	Zuordnung, Bewertung		
		I	II	III
f)	Es gilt $V_{a}=\left\|\frac{1}{6} \cdot \frac{a}{a+1} \cdot \frac{a}{a-1}\right\|=\left\|\frac{a^{2}}{6\left(a^{2}-1\right)}\right\|$. Für $a>1$ oder $a<-1$ gilt: $V_{a}=\frac{a^{2}}{6 \cdot\left(a^{2}-1\right)}$. Für diesen Bereich gilt also $V_{a}=V_{-a}$ und man kann sich auf die Betrachtung des Verhaltens der Funktion auf den Bereich $a>1$ beschränken, für das asymptotische Verhalten auf $x \rightarrow \infty$. Es ergibt sich $\lim _{a \rightarrow \infty} V_{a}=\lim _{a \rightarrow \infty}\left(\frac{a^{2}}{6\left(a^{2}-1\right)}\right)=\frac{1}{6}$. Für $a=0$ ist ersichtlich das Volumen gleich Null. Da das Volumen aber größer oder gleich Null sein muss, liegt hier ein Minimum vor. Andererseits liegt bei $a=1$ eine Polstelle vor. Da das Volumen immer positiv ist, ist gesichert, dass V_{a} für beide Richtungen der Annäherung an die Polstelle über alle Grenzen wächst. Damit hat V_{a} kein Maximum.			15
	Insgesamt 100 BWE	25	60	15

II. 2 Mehrstufiger Produktionsprozess

Ein Metall verarbeitender Betrieb stellt für den Heimwerkerbedarf Kleinteile her. Die vier Produkte P_{1}, P_{2}, P_{3} und P_{4} werden zu den drei unterschiedlichen Sortimenten S_{1}, S_{2} und S_{3} zusammengestellt. Den Baumärkten werden die zwei unterschiedliche Verpackungseinheiten (Kartons) K_{1} und K_{2} angeboten, in denen die Sortimente geliefert werden. Die folgenden Stücklisten geben an, wie viele Mengeneinheiten (ME) der einzelnen Produkte zu je einer ME eines Sortimentes zusammengestellt werden, wie viele ME der einzelnen Sortimente für je eine Verpackungseinheit benötigt werden und wie viele ME der einzelnen Produkte in je ein ME der jeweiligen Verpackungseinheit enthalten sind.

$P \rightarrow S$	S_{1}	S_{2}	S_{3}
P_{1}	10	20	0
P_{2}	20	20	40
P_{3}	20	30	40
P_{4}	40	30	60

$S \rightarrow K$	K_{1}	K_{2}
S_{1}	8	$a+b$
S_{2}	a	16
S_{3}	20	b

$P \rightarrow K$	K_{1}	K_{2}
P_{1}	320	540
P_{2}	1.200	1.160
P_{3}	1.320	1.320
P_{4}	1.880	1.960

Die Herstellungskosten pro ME der einzelnen Produkte sind durch folgenden Kostenvektor in Geldeinheiten (GE) gegeben:

$$
\vec{k}_{P}^{T}=(0,05|0,08| 0,1 \mid 0,15)
$$

Die Herstellungskosten pro ME der einzelnen Sortimente sind durch folgenden Kostenvektor in GE gegeben:

$$
\vec{k}_{S}^{T}=(0,5|1,5| 1)
$$

Die Herstellungskosten pro ME der einzelnen Verpackungseinheiten sind durch folgenden Kostenvektor in GE gegeben:

$$
\vec{k}_{K}{ }^{T}=(4 \mid 3,2)
$$

Der Verkaufspreis pro ME der einzelnen Verpackungseinheiten ist durch folgenden Vektor in GE gegeben:

$$
\vec{p}^{T}=(700 \mid 900)
$$

a) Geben Sie die zu den Stücklisten gehörigen entsprechenden Matrizen an und benennen Sie diese eindeutig.
Berechnen Sie die fehlenden Werte a und b der Sortiments-Kartons-Stückliste.
Für die weiteren Berechnungen seien $a=12$ und $b=10$.
Das Unternehmen erhält einen Kundenauftrag über die Lieferung von 400 ME von K_{1} und 500 ME von K_{2}. Die anteiligen fixen Kosten K_{f} betragen für diesen Auftrag 150.000 GE .
b) Zeigen Sie, dass die variablen Stückkosten 572 GE für den Karton K_{1} und 594 GE für K_{2} betragen (also $\vec{k}_{v}{ }^{T}=(572 \mid 594)$) und bestimmen Sie die Gesamtkosten, den Gesamterlös und den Gesamtgewinn für den Kundenauftrag.
c) Nach Erledigung des Kundenauftrages liegen noch folgende Restbestände an Sortimenten im Lager:

$$
820 \mathrm{ME} \text { von } S_{1} \quad \text { und } \quad 700 \mathrm{ME} \text { von } S_{3} .
$$

Ermitteln Sie, wie viele ME der beiden Kartons K_{1} und K_{2} noch zusammengestellt werden können, wenn das Lager vollständig geräumt werden soll.

Berechnen Sie, wie viele Sortimente von S_{2} zur Zusammenstellung der Kartons benötigt werden.
Das Unternehmen gewährt einem Baumarkt für die Abnahme der aus der Lagerräumung zusätzlich hergestellten Kartons einen Rabatt von 10\% auf die Verkaufspreise.
Ermitteln Sie, welchen Gewinn der Betrieb aus dem Verkauf der zusätzlich hergestellten Kartons erwirtschaftet, wenn hierfür keine fixen Kosten zu berücksichtigen sind.
d) Die Produktion soll auf eine neue Technologie umgestellt werden, die einerseits die Fertigungskosten erhöht, andererseits aber die Verarbeitung kostengünstigerer Materialien erlaubt. Die Auswirkung bei den variablen Kosten lassen sich durch den Parameter $t\left(t \in \mathbb{R}^{+}\right)$darstellen. Die veränderten variablen Stückkosten sind durch den folgenden Vektor gegeben:
$\vec{k}_{v}^{T}=\left(4 t^{2}-12 t+572 \mid 4 t^{3}+11 t^{2}-16 t+594\right)$

Ermitteln Sie für den obigen Kundenauftrag die variablen Gesamtkosten $K_{v}(t)$ in Abhängigkeit vom Parameter t.
Bestimmen Sie, für welches t die variablen Gesamtkosten $K_{v}(t)$ für den Kundenauftrag minimal werden und welcher zusätzliche Gewinn sich durch die neue Produktionstechnologie erzielen lässt.

Erwartungshorizont

	Lösungsskizze	Zuordnung, Bewertung		
		I	II	III
a)	$A=\left[\begin{array}{ccc} 10 & 20 & 0 \\ 20 & 20 & 40 \\ 20 & 30 & 40 \\ 40 & 30 & 60 \end{array}\right] ; \quad B=\left[\begin{array}{cc} 8 & a+b \\ a & 16 \\ 20 & b \end{array}\right] ; \quad C=\left[\begin{array}{cc} 320 & 540 \\ 1200 & 1160 \\ 1320 & 1320 \\ 1880 & 1960 \end{array}\right]$ Ansatz: $A \cdot B=C$ $\left[\begin{array}{ccc} 10 & 20 & 0 \\ 20 & 20 & 40 \\ 20 & 30 & 40 \\ 40 & 30 & 60 \end{array}\right] \cdot\left[\begin{array}{cc} 8 & a+b \\ a & 16 \\ 20 & b \end{array}\right]=\left[\begin{array}{cc} 320 & 540 \\ 1200 & 1160 \\ 1320 & 1320 \\ 1880 & 1960 \end{array}\right]=C$ $\left[\begin{array}{ccc} 10 & 20 & 0 \\ 20 & 20 & 40 \\ 20 & 30 & 40 \\ 40 & 30 & 60 \end{array}\right] \cdot\left[\begin{array}{cc} 8 & a+b \\ a & 16 \\ 20 & b \end{array}\right]=\left[\begin{array}{cc} 80+20 a & 10 a+10 b+320 \\ 960+20 a & 20 a+60 b+320 \\ 960+30 a & 20 a+60 b+480 \\ 1520+30 a & 40 a+100 b+480 \end{array}\right]=C$ Eine vollständige Matrizenmultiplikation ist nicht erforderlich, weil zwei Gleichungen zur Bestimmung von a und b ausreichen. Auf die Überprüfung der Erfüllbarkeit kann verzichtet werden, weil das Modell von einer eindeutigen Matrizengleichung $A \cdot B=C$ ausgeht. Lösungsbeispiel: $\begin{array}{llll} 80+20 a=320 & \Rightarrow & a=12 \\ 10 a+10 b+320=540 & & a \text { einsetzen } ; & B=\left[\begin{array}{cc} 8 & 22 \\ 12 & 16 \\ 120+10 b=220 & \Rightarrow \end{array} \begin{array}{ll} 10 & 10 \end{array}\right] \end{array}$	10	15	
b)	Gesamtkosten: $\begin{aligned} & K=K_{v}+K_{f} \quad ; \quad K_{v}=\vec{k}_{v}^{T} \cdot \vec{x}_{K} \quad ; \quad \vec{k}_{v}^{T}=\vec{k}_{P_{K}}^{T}+\vec{k}_{S_{K}}^{T}+\vec{k}_{K}^{T} \\ & \vec{k}_{P_{K}}^{T}=\vec{k}_{P}^{T} \cdot C \\ & {[0,05 ; 0,08 ; 0,1 ; 0,15] \cdot\left[\begin{array}{cc} 320 & 540 \\ 1200 & 1160 \\ 1320 & 1320 \\ 1880 & 1960 \end{array}\right]=[526 ; 545,80]=\vec{k}_{P_{K}}^{T}} \end{aligned}$			

	Lösungsskizze	Zuordnung, Bewertung		
		I	II	III
	$\begin{aligned} & \vec{k}_{S_{K}}^{T}=\vec{k}_{S}^{T} \cdot B \quad ; \quad[0,5 ; 1,5 ; 1] \cdot\left[\begin{array}{cc} 8 & 22 \\ 12 & 16 \\ 20 & 10 \end{array}\right]=[42 ; 45]=\vec{k}_{S_{K}}^{T} \\ & \vec{k}_{v}^{T}=\vec{k}_{P_{K}}^{T}+\vec{k}_{S_{K}}^{T}+\vec{k}_{K}^{T}=[526 ; 545,80]+[42 ; 45]+[4 ; 3,20]=[572 ; 594] \end{aligned}$ Die variablen Stückkosten betragen 572 GE für K_{1} und 594 GE für K_{2}. $K_{v}=\vec{k}_{v} \cdot \vec{x}_{K} \quad ; \quad[572 ; 594] \cdot\left[\begin{array}{c} 400 \\ 500 \end{array}\right]=525800=K_{v}$ Gesamtkosten: $\quad K=K_{v}+K_{f}=525800+150000=675800$ Die Gesamtkosten für den Auftrag betragen 675800 GE. Gesamterlös: $E=\vec{p}^{T} \cdot \vec{x}_{K} \quad$; $E=[700 ; 900] \cdot\left[\begin{array}{l} 400 \\ 500 \end{array}\right]=730000$ Die Gesamterlöse für den Auftrag betragen 730000 GE. Gesamtgewinn: $G=E-K=54200$ Der Gesamtgewinn für den Auftrag beläuft sich auf 54200 GE.	5	20	
c)	Ansatz: $\vec{x}_{S}=B \cdot \vec{x}_{K}$ $\begin{aligned} & {\left[\begin{array}{cc} 8 & 22 \\ 12 & 16 \\ 20 & 10 \end{array}\right] \cdot\left[\begin{array}{l} x_{1} \\ x_{2} \end{array}\right]=\left[\begin{array}{c} 820 \\ x_{S 2} \\ 700 \end{array}\right]=\vec{x}_{S}} \\ & 8 x_{1}+22 x_{2}=820 \\ & 12 x_{1}+16 x_{2}=x_{S_{2}} \\ & 20 x_{1}+10 x_{2}=700 \end{aligned}$ Aus der ersten und der dritten Gleichungen ergibt sich: $\begin{aligned} & x_{1}=20 \\ & x_{2}=30 \end{aligned}$ Durch Einsetzen der x-Werte in die zweite Gleichung ergibt sich: $x_{S_{2}}=720$ Es lassen sich noch 20 Kartons von K_{1} und 30 Kartons von K_{2} aus den Lagerbeständen fertigen. Hierfür werden noch 720 Sortimente von S_{2} benötigt. $\overrightarrow{d b}^{T}=\vec{p}^{T} \cdot 0,9-\vec{k}_{v}^{T}=[700 ; 900] \cdot 0,9-[572 ; 594]=[58 ; 216]$			

	Lösungsskizze	Zuordnung, Bewertung		
		I	II	III
	$\begin{aligned} & D B=\overrightarrow{d b}^{T} \cdot \vec{x} \\ & {[58 ; 216] \cdot\left[\begin{array}{l} 20 \\ 30 \end{array}\right]=7640=D B} \end{aligned}$ Der Betrieb erwirtschaftet einen zusätzlichen Gewinn von 7640 GE, da die fixen Kosten bereits gedeckt sind. Alternativ können auch die variablen Gesamtkosten und der Erlös für den Auftrag berechnet werden, um mit diesen Ergebnissen den Gewinn zu ermitteln.	5	10	10
d)	$\begin{aligned} & \text { Ansatz: } \quad K_{v}(t)={\overrightarrow{k_{v}}}_{v}^{T} \cdot \vec{x}_{K} \\ & {\left[4 t^{2}-12 t+572 ; 4 t^{3}+11 t^{2}-16 t+594\right] \cdot\left[\begin{array}{l} 400 \\ 500 \end{array}\right]=} \\ & {\left[2000 t^{3}+7100 t^{2}-12800 t+525800\right]} \\ & K_{v}(t)=2000 t^{3}+7100 t^{2}-12800 t+525800 \\ & K_{v}^{\prime}(t)=6000 t^{2}+14200 t-12800 \\ & K_{v}^{\prime \prime}(t)=12000 t+14200 \end{aligned}$ Bed.: $K_{v}^{\prime}(t)=0 \wedge K_{v}^{\prime \prime}(t)>0$ $\begin{aligned} & 6000 t^{2}+14200 t-12800=0 \\ & t^{2}+2,3 \overline{6} t-2,1 \overline{3}=0 \\ & t_{1}=0,70 \quad K_{v}{ }^{\prime \prime}(0,70)>0 \quad \text {, also Min } \quad K_{v}(0,70)=521005 \\ & t_{2}=-3,06 \quad \text { nicht relevant, weil } t \in \mathbb{R}^{+} \end{aligned}$ Bei $t=0,7$ sinken die variablen Kosten von zuvor 525.800 GE auf 521.005 GE. Damit werden die Kosten um 4.795 GE gesenkt. Es lässt sich also durch die neue Produktionstechnologie ein zusätzlicher Gewinn von 4.795 GE erzielen.		15	10
	Insgesamt 100 BWE	20	60	20

III. 1 Blutspenden

Jeder Mensch hat Blut einer bestimmten Blutgruppe. Die folgende Tabelle zeigt die Häufigkeit des Auftretens von drei Blutgruppen in einer Bevölkerung:

Blutgruppe	AB rh-	B Rh +	$\mathrm{A} \mathrm{Rh}+$
Anteil	$\frac{1}{100}$	$\frac{11}{100}$	$\frac{1}{3}$

a) Es werde eine feste Anzahl von zufällig herausgegriffenen Blutspendern betrachtet.

- Unter welchen Umständen ist es sinnvoll, die Anzahl X der Personen unter den Blutspendern, die eine bestimmte Blutgruppe haben, als binomialverteilt anzunehmen?
- Beschreiben Sie eine Situation, in der die Voraussetzungen einer Binomialverteilung nicht erfüllt sind.

Im Folgenden soll angenommen werden, dass die in a) genannten Zufallsgrößen X tatsächlich binomialverteilt ist.
b) Berechnen Sie die Wahrscheinlichkeit dafür, dass unter

- 100 Blutspendern genau 11 Blutspender mit der Blutgruppe B Rh+ sind,
- 100 Blutspendern höchstens einer mit der Blutgruppe AB rh- ist,
- 50 Blutspendern mindestens 15 Blutspender mit der Blutgruppe A Rh+ sind,
- 2500 Blutspendern mindestens 800 Blutspender und höchstens 900 Blutspender mit der Blutgruppe A Rh+ sind.
c) Berechnen Sie, wie viele Spender man mindestens benötigt, um mit einer Wahrscheinlichkeit von mehr als 99% mindestens einen Spender mit der Blutgruppe AB rh- zu finden.

Man kann davon ausgehen, dass in Deutschland ein Anteil von 1% unter den möglichen Blutspendern mit Präcortal-Retroviren infiziert ist.
Jede Blutspende wird auf die Präcortal-Retroviren getestet. Der dafür verwendete Test erkennt eine vorhandene Infektion mit einer Wahrscheinlichkeit von 99 \%. Mit einer Wahrscheinlichkeit von 2 \% zeigt der Test eine Infektion auch bei nicht infiziertem Blut an.
d) Blutspender werden nach der Spende üblicherweise über den Ausgang des Tests informiert.

Bestimmen Sie die Wahrscheinlichkeit dafür, dass bei einem zufällig ausgewählten Spender das Testergebnis fehlerhaft ist.
e) Bei einer Person weist der Test auf eine Infektion hin. Bestimmen Sie die Wahrscheinlichkeit, dass diese Person dennoch nicht infiziert ist. Interpretieren Sie diesen Wert.
f) Die Testentwickler wollen den Test verbessern im Hinblick auf das erstaunliche Resultat von e).

Da bisher der Test bei 2% der nicht infizierten Personen dennoch auf eine Infektion hinweist, versuchen sie, diesen Prozentsatz zu senken.
Ermitteln Sie den Wert, auf den er gesenkt werden müsste, damit die in e) bestimmte Wahrscheinlichkeit immerhin bei 50% liegt.

Erwartungshorizont

	Lösungsskizze	Zuordnung, Bewertung		
		I	II	III
a)	Interessiert man sich nur für eine der Blutgruppen und ob ein Mensch diese Blutgruppe hat oder nicht (z . B. bei einer Bluttransfusion), so liegt ein Bernoul-li-Experiment vor. Geht man zudem von einer großen Grundgesamtheit aus und wenig Personen, die zu einem Blutspendetermin erscheinen, kann die Tatsache, dass „nicht zurückgelegt wird" (dass niemand mehrfach nacheinander Blut spenden darf), vernachlässigt werden. Bestehen zwischen den Blutgruppen der Spender keine Abhängigkeiten, so sind alle Voraussetzungen für eine BernoulliKette erfüllt, X ist binomialverteilt. Die Blutgruppe eines Menschen ist durch die Blutgruppen seiner Vorfahren bestimmt. Kommen Familienangehörige gemeinsam zum Blutspenden, so liegt keine Unabhängigkeit vor, also auch keine Binomialverteilung.		15	
b)	Die Wahrscheinlichkeit für genau k Treffer in einer Bernoulli-Kette der Länge n beträgt: $P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}$ $n=100, \quad p=0,11:$ $\begin{aligned} & \quad P(X=11)=\binom{100}{11} \cdot 0,11^{11} \cdot 0,89^{89} \approx 0,127 . \\ & n=100, p=0,01: \end{aligned}$ $P(X \leq 1)=P(X=0)+P(X=1)=0,99^{100}+100 \cdot 0,01 \cdot 0,99^{99} \approx 0,736 .$ $n=50, p=\frac{1}{3}$. Hierfür liegen Tabellen mit den kumulierten Werten vor: $\begin{aligned} & P(X \geq 15)=1-P(X \leq 14) \approx 1-0,2612 \approx 0,739 . \\ n= & 2500, p=\frac{1}{3}: \end{aligned}$ Da $\sigma=\sqrt{n \cdot p \cdot(1-p)}=\sqrt{2500 \cdot 0, \overline{3} \cdot 0, \overline{6}}=\sqrt{555, \overline{5}}>3$, kann die Binomialverteilung durch die Normalverteilung approximiert und die integrale Näherungsformel angewendet werden. $\begin{aligned} & P(800 \leq X \leq 900) \approx \Phi\left(\frac{900,5-\mu}{\sigma}\right)-\Phi\left(\frac{799,5-\mu}{\sigma}\right) \\ & =\Phi\left(\frac{900,5-833, \overline{3}}{\sqrt{555, \overline{5}}}\right)-\Phi\left(\frac{799,5-833, \overline{3}}{\sqrt{555, \overline{5}}}\right) \\ & \approx \Phi(2,85)-\Phi(-1,44)=\Phi(2,85)-(1-\Phi(1,44)) \approx 0,9978-0,0749 \approx 0,923 . \end{aligned}$ In einigen Büchern wie auch in der genehmigten Tafel wird die Formel von Moivre-Laplace ohne die Korrektur mit 0,5 angegeben. Entsprechende Rechnungen sind natürlich auch als richtig anzusehen.	15	10	

	Lösungsskizze	Zuordnung, Bewertung		
		I	II	III
c)	Aus der Überlegung, dass „kein Spender" das Gegenereignis von „mindestens ein Spender" ist, ergibt sich der Ansatz: Gesucht ist das kleinste n, so dass gilt: $1-0,99^{n}>0,99$. Aufgelöst nach n erhält man: $n>\frac{\lg 0,01}{\lg 0,99}$ und somit $n=459$.		10	
d)	Es bezeichne - K das Ereignis, dass die betreffende Person infiziert ist, - $\quad P_{0}$ das Ereignis, dass der Test bei der betreffenden Person eine Infektion anzeigt. Gegeben sind: - $P(K)=0,001$ (a-priori-Wahrscheinlichkeit) - $\quad P\left(P_{0} / K\right)=0,99$ - $\quad P\left(P_{0} / \bar{K}\right)=0,02$ Das Testergebnis ist fehlerhaft, wenn eine vorhandene Infektion nicht angezeigt wird oder wenn eine Infektion angezeigt wird, obwohl das Blut nicht infiziert ist. Mit Hilfe eines Baumdiagramms oder durch folgende Rechnung erhält man: $\begin{aligned} & P(F)=P\left(\overline{P_{0}} \cap K\right)+P\left(P_{0} \cap \bar{K}\right)=P(K) \cdot P\left(\overline{P_{0}} / K\right)+P(\bar{K}) \cdot P\left(P_{0} / \bar{K}\right) \\ & =0,001 \cdot 0,01+0,999 \cdot 0,02 \approx 0,020 \end{aligned}$ Nur in ca. 2% aller Fälle ist das Testergebnis fehlerhaft.	10	10	
e)	Gesucht ist $P\left(\bar{K} / P_{0}\right)=\frac{P(\bar{K}) \cdot P\left(P_{0} / \bar{K}\right)}{P\left(P_{0}\right)}$. Für den Nenner gilt: $\begin{aligned} & P\left(P_{0}\right)=P(\bar{K}) \cdot P\left(P_{0} / \bar{K}\right)+P(K) \cdot P\left(P_{0} / K\right)=0,999 \cdot 0,02+0,001 \cdot 0,99=0,02097 \\ & P\left(\bar{K} / P_{0}\right)=\frac{0,999 \cdot 0,02}{0,02097} \approx 0,953 \end{aligned}$ Dieses Ergebnis erscheint auf den ersten Blick sehr erstaunlich: trotz eines positiven Testergebnisses ist für eine Person die Wahrscheinlichkeit, dass sie nicht infiziert, ist noch über 95\%. Das liegt daran, dass der Anteil der nicht mit diesen Viren infizierten Personen in der Bevölkerung so groß ist, dass 2% von dieser Personengruppe der nicht Infizierten bei weitem mehr sind als der Anteil von 99% der richtig diagnostizierten Kranken.		10	5

	Lösungsskizze	Zuordnung, Bewertung		
		I	II	III
f)	Für diesen Wert x müsste nach e) gelten: $\begin{aligned} \frac{0,999 \cdot x}{0,999 \cdot x+0,001 \cdot 0,99}=0,5 & \Leftrightarrow \quad 0,999 x=0,000495+0,4995 x \\ & \Leftrightarrow 0,4995 x=0,000495 \\ & \Leftrightarrow \quad x \approx 9,91 \cdot 10^{-4} \end{aligned}$ Der Wert müsste noch unter 1% liegen.			15
	Insgesamt 100 BWE	25	55	20

Stochastik 2

III. 2 Kugelschreiberproduktion

Eine Firma stellt Kugelschreiber her, die die Abnehmer als Werbegeschenke für ihre Kunden nutzen. Bei der Produktion treten zwei voneinander unabhängige Fehler auf: defekte Mechanik (3 \%) und defekte Mine (2 \%).
a) Ein Kugelschreiber wird zufällig der laufenden Produktion entnommen.

- Berechnen Sie die Wahrscheinlichkeit, dass der Kugelschreiber sowohl eine defekte Mechanik als auch eine defekte Mine hat.
- Zeigen Sie, dass der Kugelschreiber mit einer Wahrscheinlichkeit von ca. 95% fehlerfrei ist.
- Ein Qualitätsprüfer prüft zehn zufällig der Produktion entnommene Kugelschreiber. Berechnen Sie die Wahrscheinlichkeit, dass mindestens ein Kugelschreiber fehlerhaft ist.
- Aus langer beruflicher Erfahrung meint der Qualitätsprüfer, dass er mindestens 100 Kugelschreiber prüfen muss, um mit einer Wahrscheinlichkeit von mindestens 99% auch mindestens einen defekten Kugelschreiber zu finden.
Beurteilen Sie die Aussage des Qualitätsprüfers.
b) Die Kugelschreiber werden zu je 50 Stück in Schachteln verpackt.
- Bestimmen Sie die durchschnittliche Anzahl defekter Kugelschreiber in einer Schachtel.
- Bestimmen Sie die Wahrscheinlichkeit, dass diese Durchschnittszahl nicht überschritten wird.

An einen Abnehmer liefert die Herstellerfirma Sendungen zu je 20 Schachteln.

- Bestimmen Sie die Wahrscheinlichkeit dafür, dass die Sendung genau 50 defekte Kugelschreiber enthält.
- Interpretieren Sie Ihr Ergebnis unter Berücksichtigung der Bemerkung eines ,„stochastischen Laien", dass die berechnete Wahrscheinlichkeit ihm sehr niedrig vorkommt (unter 10%).
c) Die Herstellungskosten eines Kugelschreibers betragen $0,30 €$. Der Herstellerbetrieb strebt einen Reingewinn von 10% an. Die Abgabe der Kugelschreiber erfolgt für $0,40 €$. Allerdings wird der Reingewinn dadurch verringert, dass sich der Betrieb den Abnehmern gegenüber verpflichtet hat, defekte Kugelschreiber zurück zu nehmen und durch extra geprüfte zu ersetzen. Pro Ersatz entsteht $1 €$ an zusätzlichen Kosten.
Beurteilen Sie, ob unter diesen Bedingungen der angestrebte Gewinn voraussichtlich erwirtschaftet werden kann.
d) Ein Großabnehmer dieses Herstellerbetriebes erhält ein Angebot eines Konkurrenten. Dieser beziffert den Anteil fehlerfreier Kugelschreiber in seiner Produktion auf mindestens 98%. Da es sehr ärgerlich ist, defekte Werbegeschenke zu verteilen, beschließt der Großabnehmer mit einem Signifikanztest auf dem 5\% Niveau, das Angebot des Konkurrenten zu prüfen, indem eine Probelieferung von 50 Kugelschreibern auf Fehlerfreiheit untersucht wird. Bei der Frage, wie das Ergebnis nach Durchführung des Tests auszuwerten sei, kommt es zu einem Streit zwischen zwei Mitgliedern der Geschäftsleitung:
- A hat hohes Vertrauen in das Angebot des Konkurrenten und meint, man solle es nur ablehnen, wenn signifikant deutlich wird, dass das Versprechen des Konkurrenten nicht stimmt.
- B hält den Konkurrenten für unsolide und schlägt vor, das Angebot nur anzunehmen, wenn signifikant deutlich wird, dass der Konkurrent wirklich besser ist als die alte Lieferfirma.

Beurteilen Sie, bei welchen Prüfergebnissen A und bei welchen Prüfergebnissen B den Hersteller wechseln würde.

Erwartungshorizont

	Lösungsskizze	Zuordnung, Bewertung		
		I	II	III
a)	- Ereignis A : Sowohl die Mechanik als auch die Mine sind defekt. Es bezeichne: $\quad K$: defekte Mechanik $\quad E$: defekte Mine Nach Voraussetzung gilt: $\quad P(K)=0,03, \quad P(E)=0,02$ Unmittelbar aus der Definition der Unabhängigkeit oder mit Hilfe eines Baumdiagramms folgt: $P(A)=P(K \cap E)=P(K) \cdot P(E)=0,0006=0,06 \%$ - Ereignis B: Der Kugelschreiber ist fehlerfrei. $P(B)=P(\bar{K} \cap \bar{E})=P(\bar{K}) \cdot P(\bar{E})=0,97 \cdot 0,98=0,9506 \approx 95 \%$ - Mindestens ein Kugelschreiber ist defekt: Es beschreibe X die Anzahl der fehlerhaften Kugelschreiber. Die Prüfung von n Kugelschreibern kann als Bernoulli-Kette der Länge n angesehen werden. Es handelt sich offensichtlich um eine Massenproduktion, die Fehler treten nach Aufgabenstellung unabhängig voneinander auf, so dass von einer konstanten Trefferwahrscheinlichkeit von $p=0,05$ ausgegangen werden kann. Die Zufallsvariable X ist demnach binomialverteilt. Hier gilt: $n=10, p=0,05$. $P(X \geq 1)=1-P(X=0)=1-\binom{10}{0} \cdot 0,05^{0} \cdot 0,95^{10}=1-0,5987 \approx 0,4013 \approx 40,1 \%$ Das Ergebnis kann auch mithilfe der Tafel bestimmt werden. Ist $n=10$, so ist in der Stichprobe mit einer Wahrscheinlichkeit von ca. 40% mindestens ein fehlerhafter Kugelschreiber enthalten. - Im Folgenden ist n zu bestimmen. Es soll gelten: $P(X \geq 1) \geq 0,99$. Aus $P(X \geq 1) \geq 0,99 \Leftrightarrow 1-P(X=0) \geq 0,99 \Leftrightarrow 0,95^{n} \leq 0,01 \Leftrightarrow n \geq \frac{-2}{\lg 0,95}$ folgt: $n \geq 90$ Auch mit systematischem Probieren lässt sich n aus der Bedingung $0,95^{n} \leq 0,01$ ermitteln. Auch mit einem Gegenbeispiel für n mit $90 \leq n<100$ ist die Aussage des Qualitätsprüfers widerlegt.	10	20	
b)	- Erwartungswert $n=50$ und $p=0,05$. Da X binomialverteilt ist, gilt: $E(X)=n \cdot p=2,5$ Pro Schachtel sind also im Durchschnitt 2,5 Kugelschreiber defekt.			

	Lösungsskizze	Zuordnung, Bewertung		
		I	II	III
	- Bestimmt werden soll $P(Z \leq 2)$: Entweder berechnet man die Einzelwahrscheinlichkeiten mit der Formel $\begin{aligned} & P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k} \text { und erhält } \\ & P(X \leq 2)=0,95^{50}+\binom{50}{1} \cdot 0,05^{1} \cdot 0,95^{49}+\binom{50}{2} \cdot 0,05^{2} \cdot 0,95^{48} \approx 0,5405 \approx 54,1 \% \end{aligned}$ oder man bedient sich der Formelsammlung, die eine Tafel für $n=50$ und $p=0,05$ enthält, und liest den Wert 0,5405 ab. - Ereignis G : Sendung enthält genau 50 defekte Kugelschreiber $n=1000, p=0,05$. Es gilt: $P(G)=P(X=50)=\binom{1000}{50} 0,05^{50} \cdot 0,95^{950} \approx 0,058$ Mit den meisten Taschenrechnern kann man diesen Wert mit dieser Formel auf diesem Wege nicht berechnen, aber man kann die Binomial- durch die Poisson-Verteilung approximieren, da n sehr groß und p klein ist. $\begin{aligned} & P(X=k)=\binom{n}{k} \cdot p^{k}(1-p)^{n-k} \approx \frac{\mu^{k}}{k!} e^{-\mu} . \\ & P(G) \approx \frac{\mu^{50}}{50!} e^{-\mu}=\frac{50^{50}}{50!} e^{-50} \approx 0,06 \end{aligned}$ - Der Erwartungswert der Anzahl defekter Kugelschreiber in 20 Schachteln mit je 50 Kugelschreibern beträgt zwar $n \cdot p=1000 \cdot 0,05=50$, aber es ist dennoch sehr unwahrscheinlich, diesen genau zu treffen. (Andererseits ist es sehr wahrscheinlich, in die „Nähe" zu kommen, z.B. in eine 2σ-Umgebung.)	5	15	10
c)	Die Zufallsvariable Y beschreibe die Kosten, die pro Kugelschreiber auftreten. Dann gilt: $E(Y)=0,30 € \cdot 0,95+1,30 € \cdot 0,05=0,35 €$ Bei einem Preis von $0,40 €$ ist also ein Gewinn von $0,05 €$ pro Kugelschreiber zu erwarten. Dieser beträgt dann $\frac{1}{7} \approx 14,3 \%$ der zu erwartenden Kosten. Der Herstellerbetrieb kann also sein Planungsziel erreichen.	10	5	

	Lösungsskizze	Zuordnung, Bewertung		
		I	II	III
d)	In beiden Fällen handelt es sich um einen einseitigen Hypothesentest über eine Binomialverteilung mit $n=50$. A vertraut dem Angebot des Konkurrenten und verwirft die Nullhypothese $H_{A}: p \geq 0,98$ erst dann, wenn das Ergebnis der Stichprobe so klein ist, dass es im Ablehnungsbereich von H_{A} liegt. Hierbei ist $\mu=n \cdot p=49, \sigma=\sqrt{n \cdot p \cdot(1-p)}=\sqrt{0,98}<3$ Hier ist also die Voraussetzung für die Approximation der Binomial- durch die Normalverteilung nicht erfüllt. Es muss mit dem Tafelwerk gearbeitet werden, das sowohl für $p=0,02$ als auch für $p=0,05$ vorliegt. Mit Hilfe der Tafel ergibt sich unter der Annahme $p=0,98$ für die Anzahl Z der fehlerfreien Kugelschreiber: $P(Z \leq 46) \approx 1,8 \% \quad, \quad P(Z \leq 47) \approx 7,8 \%$ A wird also erst dann beim alten Hersteller bleiben wollen, wenn weniger als 47 fehlerfreie Kugelschreiber in der Lieferung sind. B misstraut dem Konkurrenten und ist erst dann bereit, die Lieferfirma zu wechseln, wenn das Ergebnis der Stichprobe auf eine deutlich bessere Qualität hinweist. Seine Nullhypothese ist, dass die Qualität keineswegs besser als die des alten Lieferanten ist: $H_{B}: p \leq 0,95$. Von dieser Meinung weicht er erst ab, wenn die Stichprobe ungewöhnlich gut ausfällt. Unter der Annahme $p=0,95$ liest man aus der Tafel ab: $P(Z=50)=1-P(Z \leq 49) \approx 7,7 \% .$ Das heißt: selbst wenn $\mathrm{B} H_{B}$ erst dann ablehnt, wenn alle Kugelschreiber fehlerfrei sind, ist die Irrtumswahrscheinlichkeit 1. Art immer noch über 5%, d.h. B wird durch kein mögliches Testergebnis davon abzubringen sein, den alten Lieferanten beizubehalten. (Um hier überhaupt zu signifikanten Ergebnissen zu kommen, müsste n erhöht werden, der Fehler 2. Art beträgt so übrigens 100%).		10	15
	Insgesamt 100 BWE	25	50	25

