ANALYSIS 1

I. 1 Drei ganzrationale Funktionen

Gegeben sind zwei ganzrationale Funktionen f und g mit

$$
f(x)=0,5 x^{4}-x^{3} \quad \text { und } \quad g(x)=0,5 x^{4}-2 x^{3} \text { mit } x \in \mathbb{R}
$$

sowie ihre grafische Darstellung (s. Anlage).
a) Geben Sie an, welcher Graph zu welcher Funktion gehört. Begründen Sie Ihre Angabe.
b) Bestimmen Sie rechnerisch für g die Extrempunkte und die Wendepunkte.

Geben Sie die Gleichungen der Wendetangenten an.
c) Ermitteln Sie das Maß der Fläche, die von den beiden Graphen und der x-Achse eingeschlossen wird.
d) Gegeben ist nun eine dritte Funktion h mit $h(x)=0,5 x^{4}-\frac{4}{3} x^{3}$.

Bestimmen Sie die Nullstellen von h.
Skizzieren Sie in der Anlage den ungefähren Verlauf des Graphen von h für $x \geq 0$ mit Hilfe der Nullstellen und folgender Angaben:
h hat einen Tiefpunkt in $T(2 \mid-2, \overline{6})$ und zwei Wendepunkte in $W_{1}(0 \mid 0)$ und $W_{2}(1, \overline{3} \mid-1,58 .$.$) .$
e) Die Tiefpunkte der Funktionen f, g und h sind $T_{f}\left(\frac{3}{2} \left\lvert\,-\frac{27}{32}\right.\right), T_{g}\left(3 \left\lvert\,-\frac{27}{2}\right.\right)$ und $T_{h}\left(2 \left\lvert\,-\frac{8}{3}\right.\right)$.

Diese Punkte liegen alle auf dem Graphen einer ganzrationalen Funktion k.
Entscheiden Sie, ob eine der folgenden Aussagen wahr ist:

1. k ist eine lineare Funktion mit einer Funktionsgleichung der Form $k(x)=m x+n \quad(m, n \in \mathbb{R})$
2. k ist eine ganzrationale Funktion mit einer Funktionsgleichung der Form $k(x)=a x^{4} \quad(a \in \mathbb{R})$

Begründen Sie Ihre Entscheidung und bestimmen Sie gegebenenfalls die Funktionsgleichung von k.

Anlage zur Aufgabe „Drei ganzrationale Funktionen":

Erwartungshorizont

	Lösungsskizze	Zuordnung, Bewertung		
		1	II	III
a)	Der dünn gezeichnete Graph gehört zu f. Eine von mehreren möglichen Begründungen: Die Stelle 2 ist Nullstelle von f.	5		
b)	Bestimmung der Extrem- und Wendepunkte von g : Es gilt: $\quad g^{\prime}(x)=2 x^{3}-6 x^{2}, \quad g^{\prime \prime}(x)=6 x^{2}-12 x, \quad g^{\prime \prime \prime}(x)=12 x-12$. Nullstellen von $g^{\prime}: g^{\prime}(x)=0 \Leftrightarrow 2 x^{3}-6 x^{2}=0 \Leftrightarrow x=0 \vee x=3$. Es gilt: (1) $g^{\prime}(0)=0 \wedge g^{\prime \prime}(0)=0$. $x=0$ ist keine Extremstelle; mögliche Begründung durch Einsetzen, z.B. $g(-1)=2,5$ und $g(1)=-1,5$. (2) $g^{\prime}(3)=0 \wedge g^{\prime \prime}(3)>0 \wedge g(3)=-13,5 \Rightarrow T(3 \mid-13,5)$ ist Tiefpunkt. Nullstellen von $g^{\prime \prime}: g^{\prime \prime}(x)=0 \Leftrightarrow 6 x^{2}-12 x=0 \Leftrightarrow x=0 \vee x=2$. Es gilt: $(1) g^{\prime \prime}(0)=0 \wedge g^{\prime \prime \prime}(0) \neq 0 \wedge g(0)=0 \Rightarrow W_{1}(0 \mid 0)$ ist Wendepunkt. (2) $g^{\prime \prime}(2)=0 \wedge g^{\prime \prime \prime}(2) \neq 0 \wedge g(2)=-8 \Rightarrow W_{2}(2 \mid-8)$ ist Wendepunkt. Es wird nicht erwartet, dass der Begriff Sattelpunkt benutzt wird. Bestimmung der Gleichungen der Wendetangenten: Die Wendetangente in $W_{1}(0 \mid 0)$ ist die x-Achse, da die Kurvensteigung in W_{1} gleich 0 (W_{1} also Sattelpunkt) ist. Sie hat die Gleichung $t_{1}(x)=0$ (oder: $y=0$). Die Tangente in W_{2} geht durch $(2 \mid-8)$ und hat die Steigung $g^{\prime}(2)=16-24=-8$; sie hat also die Gleichung $t_{2}(x)=-8 x+8$ (oder: $y=-8 x+8$).	15	20	
c)	Man kann beispielsweise die Fläche als Differenz zweier Integrale berechnen: $\begin{aligned} A & =\left\|\int_{0}^{4} g(x) d x\right\|-\left\|\int_{0}^{2} f(x) d x\right\| \\ & =\left\|\left[\frac{1}{10} x^{5}-\frac{1}{2} x^{4}\right]_{0}^{4}\right\|-\left\|\left[\frac{1}{10} x^{5}-\frac{1}{4} x^{4}\right]_{0}^{2}\right\| \\ & =\|102,4-128-0\|-\|3,2-4-0\| \\ & =24,8 \end{aligned}$ Die beiden Graphen begrenzen zusammen mit der x-Achse eine Fläche mit dem Inhalt 24,8 FE.		20	5
d)	Nullstellen der Funktion h : $h(x)=0 \Leftrightarrow \frac{1}{2} x^{4}-\frac{4}{3} x^{3}=0 \Leftrightarrow x^{3}\left(\frac{1}{2} x-\frac{4}{3}\right)=0 \Leftrightarrow x=0 \vee x=\frac{8}{3} .$ Die Funktion h hat die Nullstellen 0 und $\frac{8}{3}$.			

ANALYSIS 2

I. 2 Farbenproduktion

Ein mittelständisches Unternehmen produziert Farben für die Bauindustrie. Alle in der Aufgabe genannten Daten beziehen sich auf einen Produktionszeitraum von einem Monat. Die in einem gegebenen Zeitraum produzierten Mengen werden ohne zeitliche Verzögerung abgesetzt, so dass die Produktionsmenge immer identisch ist mit der Absatzmenge.
a) Aus den Daten einer Marktanalyse ist bekannt, dass der erzielbare Preis pro Mengeneinheit in Abhängigkeit von der Absatzmenge x durch die folgende Funktion p beschrieben werden kann:

$$
p: p(x)=-62 \cdot x+4092 \text { bzw. } \quad p: p(x)=-62 \cdot(x-66) .
$$

Bestimmen Sie die Erlösfunktion $E: E(x)=x \cdot p(x)$ und begründen Sie, dass diese Erlösfunktion ein Maximum annimmt, wenn die abgesetzte Menge 33 Mengeneinheiten (ME) beträgt. Geben Sie die maximale ökonomisch sinnvolle Definitionsmenge an.
b) Die Gesamtkosten für die Herstellung der Farben hängen von der zu produzierenden Menge x ab und werden beschrieben durch eine Kostenfunktion K. K lässt sich mit hinreichender Genauigkeit angeben durch:

$$
K: K(x)=2 x^{3}-147 x^{2}+3792 x+3375 .
$$

Zeigen Sie, dass K keine Extremstellen besitzt und dass diese Eigenschaft für eine Kostenfunktion typisch ist.
c) Der Gewinn G in Abhängigkeit von der abgesetzten Menge x ist die Differenz aus den Erlösen E und den entstandenen Gesamtkosten K. Alle möglichen Produktionsmengen, die für das Unternehmen keinen Verlust ergeben, für die der Gewinn also nicht negativ ist, bilden die so genannte Gewinnzone.

Auf Grund verschiedener Produktionsmengen aus der Vergangenheit ist der Unternehmensleitung bekannt, dass man sich in der Gewinnzone befindet, wenn die hergestellten Mengen zwischen 5 ME und 45 ME liegen. Ferner ist bekannt, dass der Gewinn bei einer Produktion von 30 ME maximal ist.
Bestimmen Sie die Gewinnfunktion G und zeigen Sie, dass $G(x)=-2 x^{3}+85 x^{2}+300 x-3375$ diese Bedingungen erfüllt. Berechnen Sie den maximalen Gewinn, die gewinnmaximale Absatzmenge und den zugehörigen Verkaufspreis.
d) Die Anlage zeigt die vier Graphen der Funktionen p, E, K und G. Schreiben Sie die zugehörigen Funktionsnamen an die einzelnen Graphen.
e) Auf Grund eines neuen Pachtvertrages für das Firmengrundstück steigen die Fixkosten des Unternehmens von 3375 Geldeinheiten auf 4000 Geldeinheiten (GE). In der Firmenleitung entsteht eine Diskussion über die Auswirkungen dieser Veränderung.

- Ein Firmenmitglied behauptet, dass man nach wie vor 30 ME produzieren sollte, um den Gewinn zu maximieren. Ist diese Aussage richtig? Begründen Sie Ihre Antwort.
- Beurteilen Sie im Rahmen der bisherigen Modellannahmen den Vorschlag eines anderen Firmenmitglieds, einfach den Verkaufspreis zu erhöhen, um mehr Gewinn zu machen.

Anlage zur Aufgabe „Farbenproduktion":

Erwartungshorizont

	Lösungsskizze	Zuordnung, Bewertung		
		I	II	III
a)	Gemäß Aufgabenstellung gilt für die Erlösfunktion: $E(x)=x \cdot p(x)$. Also: $E: x \rightarrow-62 x^{2}+4092 x=-62 x \cdot(x-66) .$ Dies ist eine quadratische Funktion mit den Nullstellen 0 und 66. Der Graph ist eine nach unten geöffnete Parabel, die ihre Maximalstelle in der Mitte zwischen den Nullstellen hat, also bei $x_{m}=33$. Der Nachweis der Maximalstelle über die ersten beiden Ableitungen ist zwar weniger elegant, aber ebenso zulässig. $D_{\ddot{O} K}=[0 ; 66]$	5	10	
b)	Die Kostenfunktion $K: x \rightarrow 2 x^{3}-147 x^{2}+3792 x+3375$ hat die Ableitung: $K^{\prime}: x \rightarrow 6 x^{2}-294 x+3792$ Diese hat keine reellen Nullstellen, da die Diskriminante der zugehörigen quadratischen Gleichung negativ ist ($D=-\frac{127}{4}$) und folglich existieren keine (inneren) Extremstellen. Dann ist die Kostenfunktion K streng monoton. Da der Leitkoeffizient von K positiv ist, ist sie streng monoton steigend. Dies kann mit Wissen über kubische Funktionen begründet werden oder aus der Tatsache, dass K^{\prime} überall positiv ist. Da eine Mehrproduktion in der Regel auch Mehrkosten verursachen muss, ist dies ökonomisch sinnvoll bzw. notwendig.	5	15	5
c)	Die Gewinnfunktion lautet: $G: x \rightarrow E(x)-K(x)=-2 x^{3}+85 x^{2}+300 x-3375$. Man rechnet nach, dass $x=5$ und $x=45$ Nullstellen von G sind. Durch Faktorisieren (Polynomdivision oder Horner Schema) erhält man: $G(x)=(x-5) \cdot(x-45) \cdot(-2 x-15) .$ Die dritte Nullstelle von G ist also $x=-7,5$ und liegt damit nicht im relevanten Definitionsbereich. Hieraus ergibt sich, dass die Gewinnzone zwischen $x=5$ und $x=45$ liegt. Da G eine kubische Funktion ist, liegt zwischen $x=5$ und $x=45$ genau eine Extremstelle. Wegen des negativen Leitkoeffizienten muss es sich dabei um ein Maximum handeln. Die notwendige Bedingung für eine lokale Extremstelle $G^{\prime}(x)=0$ liefert die äquivalenten Gleichungen: $\begin{aligned} & -6 x^{2}+170 x+300=0 \\ \Leftrightarrow & x^{2}-\frac{85}{3} x-50=0 \end{aligned}$			

	Lösungsskizze	Zuordnung, Bewertung		
		I	II	III
	$\begin{aligned} & \Leftrightarrow \quad x=\frac{85}{6} \pm \sqrt{\frac{7225}{36}+\frac{1800}{36}} \\ & \Leftrightarrow \quad x=\frac{85}{6} \pm \frac{95}{6} \\ & \Leftrightarrow \quad x=30 \quad \vee \quad x=-\frac{5}{3} \end{aligned}$ Bei $x=30$ liegt also die gewinnmaximale Absatz-/Produktionsmenge. Natürlich kann hier auch über die zweite Ableitung argumentiert werden. Dass 30 ME die gewinnmaximale Produktionsmenge sind, kann auch durch den Nachweis bestätigt werden, dass $x=30$ Nullstelle von G^{\prime} ist. Es gilt: $G(30)=28125$ und $\mathrm{p}(30)=2232$. Für die Herstellungsmenge von 30 Mengeneinheiten wird der Gewinn mit 28125 GE maximal und der zugehörige Preis beträgt 2232 GE.	5	25	
d)		5		
e)	- Die Kosten haben konstant um 625 Geldeinheiten zugenommen, entsprechend sinkt der Gewinn konstant um den gleichen Betrag. Die neue, veränderte Gewinnfunktion lautet $G_{\text {neu }}: x \rightarrow-2 x^{3}+85 x^{2}+300 x-4000$. Sie unterscheidet sich von der ersten Gewinnfunktion also nur um die Konstante 625 und hat damit an der gleichen Stelle ihr Maximum. Die Aussage des Firmenmitglieds ist also richtig. Der zur Produktionsmenge $x=30$ gehörende optimale Gewinn sinkt allerdings um 625 Geldeinheiten. - Hier kann u.a. wie folgt argumentiert werden: Da die Herstellungsmenge von 30 ME (vor und nach der Erhöhung der Fixkosten) gewinnoptimal ist, würde jede Veränderung des Verkaufspreises auch die absetzbare Menge von 30 ME verändern und eine Verringerung des Gewinns bewirken.		10	15
	Insgesamt 100 BWE	20	60	20

I. 3 Wetterstation

In einer Wetterstation wird die Aufzeichnung eines Niederschlagmessgeräts vom Vortag (im Zeitraum von 0 Uhr bis 20 Uhr) ausgewertet. Das Messgerät besteht aus einem nach oben offenen zylinderförmigen Gefäß mit einer Grundfläche von $1 \mathrm{~m}^{2}$. Die Wassermenge wird vom Gerät automatisch aufgezeichnet.

In der Anlage finden Sie ein Arbeitsblatt mit einer Aufzeichnungsskizze der Wetterstation. Der Graph zeigt die Wassermenge in Abhängigkeit von der Zeit in Stunden.
a) Interpretieren Sie den Graphen im Hinblick auf folgende Fragen für den Zeitraum von 0 bis 20 Uhr:
Wann hat es geregnet?
In welchem Zeitraum hat es stark, in welchem Zeitraum schwach geregnet?

Die Niederschlagsmenge wird in Millimetern oder aber in Litern pro Quadratmeter angegeben.
b) Zeigen Sie, dass die aufgefangene Niederschlagsmenge von 1 Liter Wasser ein Ansteigen des Wasserstands im Gefäß von 1 mm bedeutet.
(Dieses Messgerät ermöglicht also beide Angaben für die Niederschlagsmenge.)

Die Kurve in der Aufzeichnungsskizze der Wetterstation entspricht dem Graphen der Funktion f mit

$$
f(x)=80 e^{0,1 x}-x^{2}-40, \quad \text { für } x \in[0 ; 20] .
$$

c) Tragen Sie die fehlende Skala auf der y-Achse ein.

Berechnen Sie, wie viele Liter Wasser zwischen 0 und 20 Uhr in das Gefäß gefallen sind. Zeichnen Sie die Gerade durch den Anfangs- und Endpunkt der Kurve und interpretieren Sie die Bedeutung dieser Geraden im Sachzusammenhang der Aufgabe.
d) Untersuchen Sie f auf Wendestellen im betrachteten Intervall.
e) Interpretieren Sie die Bedeutung der 1. Ableitung und die Bedeutung dieser Wendestelle im Sachkontext der Aufgabe.
f) Skizzieren Sie in das untere Koordinatensystem des Arbeitsblatts in der Anlage den prinzipiellen Verlauf des Graphen für die Aufzeichnung eines Niederschlagsmessgerätes, der folgende Wettersituation hinsichtlich der Niederschlagsmenge beschreibt:

Wolkenbruch - Nieselregen - Sonnenschein bei wolkenlosem Himmel.
(Ablauf in der angegebenen Reihenfolge und ohne zeitliche Unterbrechungen)

Anlage zur Aufgabe „Wetterstation":

Zu Aufgabe f)

Erwartungshorizont

	Lösungsskizze	Zuordnung, Bewertung		
		I	II	III
a)	Die Aufzeichnung zeigt, dass es während des gesamten Zeitraumes geregnet hat, weil der Graph streng monoton ansteigt (auf keinem Intervall konstant ist). Es hat ab dem frühen Nachmittag immer stärker geregnet, da der Graph im letzten Teil stark steigt. Wenig geregnet hat es von etwa 4 Uhr bis etwa 14 Uhr; auf diesem Intervall steigt der Graph schwach.	10	5	
b)	Ein Zylinder mit einer Grundfläche von $1 \mathrm{~m}^{2}=10000 \mathrm{~cm}^{2}$ und dem Volumen $11=1000 \mathrm{~cm}^{3}$ hat die Höhe $\mathrm{h}=\frac{1000}{10000} \mathrm{~cm}=0,1 \mathrm{~cm}=1 \mathrm{~mm}$.	5		
c)	 Berechnung der Wassermenge: $f(0)=80-40=40$; der Anfangspunkt ist der Schnittpunkt mit der y-Achse: $S_{v}(0 \mid 40)$.			

	Lösungsskizze	Zuordnung, Bewertung		
		I	II	III
	$f(20)=80 e^{2}-400-40 \approx 151,124$; der Endpunkt der Kurve ist (20\|151). Insgesamt sind im Beobachtungszeitraum 151-40 $=111$ Liter Regen gefallen. Die Bedeutung der Geraden kann unterschiedlich interpretiert werden. Mögliche Antworten: Die Steigung der Geraden gibt die durchschnittliche Regenstärke während des gesamten Zeitraumes an. Wäre die Gerade die vom Messgerät aufgezeichnete Kurve, hätte es im gesamten Beobachtungszeitraum gleichmäßig stark geregnet.	10	15	5
d)	Bestimmung der Wendestelle: Es gilt: $f^{\prime}(x)=8 e^{0,1 x}-2 x$ $f^{\prime \prime}(x)=0,8 e^{0,1 x}-2$ Für $f^{\prime \prime}(x)=0$ gilt: $0,8 e^{0,1 x}=2 \Leftrightarrow e^{0,1 x}=2,5 \Leftrightarrow 0,1 x=\ln (2,5) \Leftrightarrow x=10 \cdot \ln (2,5) \approx 9,163$ Nachweis der Wendestelle durch Argumentation mit der grafischen Darstellung bzw. über die 3. Ableitung: $f^{\prime \prime \prime}(x)=0,08 e^{0,1 x}$. Die Wendestelle liegt etwa bei $x=9,2$.		20	
e)	Die erste Ableitung gibt die Stärke des Regens zum jeweiligen Zeitpunkt an. In der Wendestelle hat die erste Ableitung eine Extremstelle, im Fall der gegebenen Funktion eine Minimalstelle. Dies bedeutet, dass der Regen kurz nach 9 Uhr am schwächsten war.			15
f)	- Wolkenbruch: stark ansteigende Kurve - Nieselregen: schwach ansteigende Kurve - Sonnenschein: Kurve hat die Steigung 0. (Grafische Darstellung nächste Seite) Es wird nicht erwartet, dass keine Knicke im Graphen auftreten(Stetigkeit der Regenstärke) und dass der Graph in der Wolkenbruchphase einen Wendepunkt hat, aber der gesamte Graph sollte bis zum Sonnenschein streng monoton steigen, insgesamt in der Wolkenbruchphase steiler sein als in der Nieselregenphase, beim Nieselregen annähernd linear sein und natürlich in der Sonnenscheinphase konstant sein.			

II. 1 Dreieck und Pyramide

Gegeben sind die drei Punkte $A(7|0| 0), B(4|4| 0)$ und $S(3,5|0,5| 10)$.
a) Zeichnen Sie das Dreieck $A B S$ in das beigefügte Koordinatensystem ein (s. Anlage) und zeigen Sie, dass es sich um ein gleichschenkliges Dreieck handelt.
b) Bestimmen Sie eine Parameterdarstellung und eine Koordinatengleichung der Ebene E, die durch die Punkte A, B und S aufgespannt wird.
(Eine mögliche Koordinatenform ist $16 x_{1}+12 x_{2}+5 x_{3}=112$.)
c) Ermitteln Sie den Winkel, den das Dreieck $A B S$ mit der $x_{1}-x_{2}$-Ebene einschließt.
d) Das Dreieck $A B S$ sei eine Seitenfläche einer Pyramide mit quadratischer Grundfläche $A B C D$ in der $x_{1}-x_{2}$-Ebene und der Spitze S.

Zeigen Sie, dass die Punkte $C(0|1| 0)$ und $D(3|-3| 0)$ mit A und B ein Quadrat ergeben.
Zeichnen Sie die vollständige Pyramide in das Koordinatensystem ein (s. Anlage).
Zeigen Sie, dass sich die Pyramidenspitze S senkrecht über dem Mittelpunkt der Grundfläche der Pyramide befindet.
e) Bestimmen Sie ein $k \in \mathbb{R}$ so, dass die Gerade

$$
h: \vec{x}=\left(\begin{array}{c}
4,5 \\
0 \\
6
\end{array}\right)+r \cdot\left(\begin{array}{c}
k \\
-5 \\
-40
\end{array}\right), r \in \mathbb{R},
$$

durch die Pyramidenspitze S verläuft.
Zeichnen Sie h in das Koordinatensystem ein.
Zeigen Sie, dass der Schnittpunkt von h mit der $x_{1}-x_{2}$-Ebene auf einer Kante der Pyramidengrundfläche liegt.

Anlage zur Aufgabe „Dreieck und Pyramide"

Erwartungshorizont

	Lösungsskizze	Zuordnung, Bewertung		
		I	II	III
b)	Die Drei-Punkte-Form der Ebene E lautet z.B.: $E: \vec{x}=\vec{a}+r \cdot(\vec{b}-\vec{a})+t \cdot(\vec{s}-\vec{a}), \quad r, t \in \mathbb{R}$ $E: \vec{x}=\left(\begin{array}{l} 7 \\ 0 \\ 0 \end{array}\right)+r \cdot\left(\begin{array}{c} -3 \\ 4 \\ 0 \end{array}\right)+t \cdot\left(\begin{array}{c} -3,5 \\ 0,5 \\ 10 \end{array}\right), r, t \in \mathbb{R}$ Aus der Parameterdarstellung ergibt sich $\begin{aligned} & x_{1}=7-3 r-3,5 t \\ & x_{2}=4 r+0,5 t \\ & x_{3}=10 t \Leftrightarrow t=0,1 x_{3} \end{aligned} \rightarrow \begin{aligned} & 4 x_{1}=28-12 r-1,4 x_{3} \\ & 3 x_{2}= \\ & 12 r+0,15 x_{3} \end{aligned} \quad \rightarrow 4 x_{1}+3 x_{2}=28-1,25 x_{3}$ und damit eine Koordinatenform von E zu: $4 x_{1}+3 x_{2}+1,25 x_{3}=28$ $\text { bzw. } \quad 16 x_{1}+12 x_{2}+5 x_{3}=112$	5	15	
c)	Der Winkel, den das Dreieck $A B S$ mit der $x_{1}-x_{2}$-Ebene $\left(E_{1,2}\right)$ einschließt, entspricht dem Winkel, den die Normalen der Ebenen E und $E_{1,2}$ einschließen. $\vec{n}=\left(\begin{array}{c} 16 \\ 12 \\ 5 \end{array}\right) \text { aus Teil b). Ein Normalenvektor zur } x_{1}-x_{2} \text {-Ebene ist z.B. } \vec{n}_{1,2}=\left(\begin{array}{l} 0 \\ 0 \\ 1 \end{array}\right) .$ Über die Beziehung $\cos (\alpha)=\frac{\left\|\vec{n} \cdot \vec{n}_{1,2}\right\|}{\|\vec{n}\| \cdot\left\|\vec{n}_{1,2}\right\|}$ erhält man den gesuchten Winkel zu $\alpha=75,96^{\circ}$.		20	
d)	$A B C D$ ergibt ein Quadrat, wenn gilt 1. Variante: Alle Seiten sind gleichlang und jeweils zwei benachbarte Seiten stehen senkrecht aufeinander. Das trifft hier zu, denn $\begin{aligned} & \overrightarrow{D A}=\overrightarrow{C B}=\left(\begin{array}{l} 4 \\ 3 \\ 0 \end{array}\right), \overrightarrow{D C}=\overrightarrow{A B}=\left(\begin{array}{c} -3 \\ 4 \\ 0 \end{array}\right),\|\overrightarrow{A B}\|=\|\overrightarrow{C B}\|=\sqrt{3^{2}+4^{2}}=5 \text { und } \\ & \overrightarrow{A B} \perp \overrightarrow{D A} \text {, da } \overrightarrow{A B} \cdot \overrightarrow{D A}=\left(\begin{array}{c} -3 \\ 4 \\ 0 \end{array}\right) \cdot\left(\begin{array}{l} 4 \\ 3 \\ 0 \end{array}\right)=0 \text { ist. } \end{aligned}$ 2. Variante: Alle Seiten sind gleichlang und die Diagonalen sind ebenfalls gleich lang: $\|\overrightarrow{A C}\|=\sqrt{50}=\|\overrightarrow{B D}\|$ 3. Variante: Die Punkte werden in ein x-y-Koordinatensystem eingezeichnet. Dann muss jedoch argumentiert werden. (Skizze und Argumentationsbeispiel siehe nächste Seite.)			

	Lösungsskizze	Zuordnung, Bewertung		
		I	II	III
	 Argumentation z.B.: Es sind alle Seiten Hypotenusen in kongruenten rechtwinkligen Dreiecken (also gleich lang) und sie stehen wegen der Steigungen jeweils senkrecht aufeinander. Mittelpunkt der Grundfläche: Der Mittelpunkt M der Grundfläche kann durch $\vec{m}=\frac{1}{2}(\vec{a}+\vec{c})=\left(\begin{array}{c}3,5 \\ 0,5 \\ 0\end{array}\right)$ den zu $M(3,5\|0,5\| 0)$. Die ersten beiden Koordinaten von M stimmen mit denen von S überein und die 3. Koordinate von S ist positiv, also liegt S senkrecht über M.		20	
e)	Die Gerade h verläuft durch den Punkt S, wenn S sich als ein Punkt der Geraden darstellen lässt. $\left(\begin{array}{c} 3,5 \\ 0,5 \\ 10 \end{array}\right)=\left(\begin{array}{c} 4,5 \\ 0 \\ 6 \end{array}\right)+r \cdot\left(\begin{array}{c} k \\ -5 \\ -40 \end{array}\right) \Leftrightarrow r=-0,1 \wedge k=10 .$ Für $k=10$ verläuft h durch S. Berechnung des Schnittpunktes Q von h mit der $x_{1}-x_{2}$-Ebene: $\left(\begin{array}{c} 4,5 \\ 0 \\ 6 \end{array}\right)+r\left(\begin{array}{c} 10 \\ -5 \\ -40 \end{array}\right)=\left(\begin{array}{c} q_{1} \\ q_{2} \\ 0 \end{array}\right) \Leftrightarrow\left\{\begin{array}{l} q_{1}=6 \\ q_{2}=-0,75 \\ r=0,15 \end{array}\right.$ Der Schnittpunkt ist $Q(6\|-0,75\| 0)$ und liegt auf der Kante $\overline{A D}$ der Pyramide, $\overline{A D}: \vec{x}=\vec{a}+t \cdot(\vec{d}-\vec{a})=\left(\begin{array}{l} 7 \\ 0 \\ 0 \end{array}\right)+t \cdot\left(\begin{array}{c} -4 \\ -3 \\ 0 \end{array}\right), t \in[0 ; 1],$ da er für $t=0,25$ die Kantendarstellung erfüllt.		5	20
	Insgesamt 100 BWE	20	60	20

II. 2 Kalkulation

Ein Betrieb stellt in einer ersten Produktionsstufe aus drei Bauteilen T_{1}, T_{2} und T_{3} vier Zwischenprodukte Z_{1}, Z_{2}, Z_{3} und Z_{4} her. In der zweiten Produktionsstufe werden aus den Zwischenprodukten dann drei Endprodukte E_{1}, E_{2} und E_{3} montiert.

Der Materialverbrauch in Mengeneinheiten (ME) ist den beiden folgenden Tabellen zu entnehmen.

$T \rightarrow Z$	Z_{1}	Z_{2}	Z_{3}	Z_{4}
T_{1}	2	1	2	2
T_{2}	3	2	0	1
T_{3}	4	0	2	0

$Z \rightarrow E$	E_{1}	E_{2}	E_{3}
Z_{1}	4	2	0
Z_{2}	0	4	4
Z_{3}	3	2	4
Z_{4}	4	0	4

Bei der Produktion fallen Herstellungskosten in Geldeinheiten (GE) an, die sich aus den Material- und Fertigungskosten zusammensetzen.

- Herstellkosten pro ME der Zwischenprodukte:

$$
\begin{aligned}
& \vec{k}_{H Z}=(13|32,5| 26 \mid 19,5) \\
& \vec{k}_{F E}=(20|10| 27)
\end{aligned}
$$

- Fertigungskosten pro ME der Endprodukte:
a) Zeigen Sie durch eine geeignete Matrizenrechnung, dass die Bauteile-/Endproduktmatrix C wie folgt lautet:

$$
C=\left(\begin{array}{ccc}
22 & 12 & 20 \\
16 & 14 & 12 \\
22 & 12 & 8
\end{array}\right)
$$

b) Zur Abwicklung eines Kundenauftrages wurden 7000 ME von $T_{1}, 5100 \mathrm{ME}$ von T_{2} und 5800 ME von T_{3} verarbeitet.

- Ermitteln Sie, wie viele ME von den einzelnen Endprodukten E_{1}, E_{2} und E_{3} von dem Kunden bestellt worden sind.
- Bestimmen Sie die für den Auftrag angefallenen Gesamtherstellungskosten K und ermitteln Sie einen Mindestverkaufspreis $p_{\text {Min }}$ der Endprodukte (auf ganzzahlige GE gerundet), wenn alle drei Endprodukte zum gleichen Preis verkauft werden sollen und der Betrieb ohne Verlust arbeiten will.
c) Neueste Marktuntersuchungen haben ergeben, dass sich die Endprodukte E_{1}, E_{2} und E_{3} im Verhältnis von $3 t: t: 2 t$ mit $t \in \mathbb{N}^{*}$ absetzen lassen.
- Zeigen Sie, dass die Vorräte an den Bauteilen T_{1}, T_{2} und T_{3} unter Berücksichtigung des oben angegebenen Verhältnisses im Mengenverhältnis von $118 t$: $86 t$: $94 t$ benötigt werden.
- Bestimmen Sie, wie viele Bauteile T_{2} und T_{3} unter Beibehaltung der obigen Mengenverhältnisse beschafft werden müssen, wenn vom Bauteil T_{1} vorübergehend nur die begrenzte Menge von 17700 ME erhältlich ist, und ermitteln Sie , wie viele Endprodukte von E_{1}, E_{2} und E_{3} damit hergestellt werden können.
d) Ein Verbesserungsvorschlag aus der Belegschaft regt eine Umstellung der Montage des Endproduktes E_{2} an, um so eine Kostenersparnis zu erzielen. Durch das neue Montageverfahren wird pro ME von E_{2} genau eine ME von Z_{2} weniger benötigt. Allerdings verdreifachen sich dadurch die Fertigungskosten von E_{2}. Beurteilen Sie anhand der gegebenen Daten den Vorschlag.

Erwartungshorizont

	Lösungsskizze	Zuordnung, Bewertung		
		I	II	III
	Gesamtkosten K des Kundenauftrages: $\begin{aligned} & K=K_{H Z}+K_{F E} \\ & K_{H Z}=\vec{k}_{H Z} \cdot B \cdot \vec{x}_{E_{(\text {Auffrag })}} \\ & K_{H Z}=(13\|32,5\| 26 \mid 19,5) \cdot\left(\begin{array}{ccc} 4 & 2 & 0 \\ 0 & 4 & 4 \\ 3 & 2 & 4 \\ 4 & 0 & 4 \end{array}\right) \cdot\left(\begin{array}{c} 200 \\ 50 \\ 100 \end{array}\right)=83200 \\ & K_{F E}=\vec{k}_{F E} \cdot \vec{x}_{E_{(\text {Aufroga })}}=(20\|10\| 27) \cdot\left(\begin{array}{c} 200 \\ 50 \\ 100 \end{array}\right)=7200 \end{aligned}$ Hieraus ergibt sich für die Gesamtkosten K des Auftrages: $K=83.200+7.200=90.400 \mathrm{GE}$ Mindestverkaufspreis für alle drei Endprodukte je ME: $p_{M i n}=\frac{K}{200+50+100}=\frac{90400}{350}=258,28571 \ldots$ Der zugehörige Mindestverkaufspreis für alle drei Endprodukte beträgt aufgerundet 259 GE, damit der Betrieb keinen Verlust macht.	15	30	5
c)	Nachweis Mengenverhältnis: Die Absatzmenge von E_{2} sei gleich t, dann gilt gemäß des vorgegebenen Mengenverhältnisses von $3 t: t: 2 t$, dass die Absatzmenge von E_{1} gleich $3 t$ und von E_{3} gleich $2 t$ betragen muss. $\begin{aligned} & C \cdot \vec{x}_{E}=\vec{x}_{R} \text { mit } \vec{x}_{E}=\left(\begin{array}{c} 3 t \\ t \\ 2 t \end{array}\right) \\ & \left(\begin{array}{ccc} 22 & 12 & 20 \\ 16 & 14 & 12 \\ 22 & 12 & 8 \end{array}\right) \cdot\left(\begin{array}{c} 3 t \\ t \\ 2 t \end{array}\right)=\left(\begin{array}{c} 118 t \\ 86 t \\ 94 t \end{array}\right) \end{aligned}$ Hieraus ergibt sich, dass die Bauteile in einem Mengenverhältnis von $118 t: 86 t: 94 t$ benötigt werden.			

	Lösungsskizze	Zuordnung, Bewertung		
		I	II	III
	Beschaffung der Bauteile: Nach der vorherigen Rechnung muss gelten: $118 t=17700 \Leftrightarrow t=150$. Hieraus ergibt sich, dass von den Bauteilen 12900 ME von T_{2} und 14100 ME von T_{3} beschafft werden müssen. An Endproduktion können 450 ME von E_{1}, 150 ME von E_{2} und 300 ME von E_{3} hergestellt werden. Auch Matrizen- und Vektorenmultiplikationen wären hier möglich!		15	10
d)	Aus den Herstellkosten pro ME der Zwischenprodukte ist zu erkennen, dass die eingesparte ME des Zwischenproduktes Z_{2} eine Kostenersparnis von 32,5 GE erbringt. Die Verdreifachung der Fertigungskosten pro ME des Endproduktes E_{2} von 10 GE auf 30 GE führt zu Mehrkosten von 20 GE. Die Mehrkosten reduzieren die Kostenersparnis zwar, aber es ergibt sich doch eine Ersparnis von 12,5 GE pro ME von E_{2}. Der Vorschlag ist somit positiv zu beurteilen. Auch Kostenvergleichsrechnungen wären hier möglich!		10	5
	Insgesamt 100 BWE	20	60	20

III. 1 Billigflüge

Wovon leben Billigfluganbieter?

Hamburg - New York hin und zurück $300 €$!

Für diesen Flug kann eine Agentur z.B. 35 Plätze anbieten. Diese sind immer kurz nach dem Erscheinen im Internet ausgebucht und bezahlt.
Allerdings werden vor Abflug im Mittel ca. 20 \% der gebuchten Reservierungen kurzfristig abgesagt (storniert). Verwenden Sie für Ihre Lösungen den exakten Wert 20\%. Da es sich um ein Sonderangebot handelt, bekommen die Kunden bei Stornierung kein Geld zurück. Die Agentur aber kann all diese Plätze leicht als „Last-Minute-Angebote" für $250 €$ zum zweiten Mal verkaufen.
Für die Agentur ist deshalb die Anzahl der Kunden von großem Interesse, die pro Flugtermin stornieren. Es soll dazu angenommen werden, dass pro Termin die mögliche Anzahl von Stornierungen binomialverteilt ist.
a) Bestimmen Sie jeweils die Wahrscheinlichkeit, dass für den nächsten Flugtermin bei dieser Agentur

- genau 7 Plätze (durch Rechnung)
- höchstens 5 Plätze (Sie können die Tabelle in der Anlage verwenden)
- mindestens 6 Plätze
storniert werden.
b) Begründen Sie, dass der Erwartungswert für die Einnahmen der Agentur wegen der wieder verkaufbaren stornierten Plätze $12.250 €$ anstatt $10.500 €$ beträgt.

Die Stornierungen mit Doppeleinnahmen sind für die Agentur attraktiv, und sie lässt deshalb 40 Bu chungen zu, also 5 Buchungen mehr als Plätze verfügbar sind. Diese 40 Angebote sind auch immer sofort ausgebucht und bezahlt. Wenn allerdings mehr als 35 gebuchte Kunden die Reise tatsächlich antreten wollen - im so genannten Überbuchungsfall - , muss die Agentur für die überzähligen Kunden dann sehr kurzfristig teure Ersatzplätze beschaffen. Insgesamt entstehen dem Reisebüro für jeden überzähligen Kunden zusätzliche Ausgaben von $400 €$.
c) Bestimmen Sie, wie die Agentur einen Reisetermin mit 40 ursprünglich verkauften Plätzen abrechnet (Einnahmen minus zusätzliche Ausgaben),

- wenn nur 30 regulär gebuchte Personen zum Abreisetermin erschienen sind, also noch 5 „Last-Minute-Tickets" verkauft wurden
- wenn alle 40 Bucher zum Abreisetermin erschienen sind.
d) Bestimmen Sie die Wahrscheinlichkeiten folgender Ereignisse:
- alle 40 regulären Kunden erscheinen zum Abreisetermin, keiner storniert (durch Rechnung)
- es kommt zum Überbuchungsfall (Sie können die Tabelle in der Anlage verwenden).
e) Die Agentur möchte überprüfen, ob sich das Geschäft mit den Überbuchungen eigentlich lohnt. Dazu berechnet sie den Erwartungswert der Abrechnung (Einnahmen minus zusätzliche Ausgaben) und erhält als Ergebnis $12.733 €$.
Nennen Sie die Größen, die die Agentur dabei berücksichtigt hat und beschreiben Sie, wie diese Berechnung prinzipiell erfolgen kann. Interpretieren Sie dann dieses Ergebnis der Agentur.

Anlage zur Aufgabe „Billigflüge":

Auszug aus einer Tabelle für die Binomialverteilung $B(n, p, k)=\binom{n}{k} \cdot p^{k} \cdot(1-p)^{(n-k)}$

\mathbf{n}	\mathbf{k}	$\mathbf{p}:$	$\mathbf{0 , 1}$	$\mathbf{0 , 2}$	$\mathbf{0 , 3}$
	$\mathbf{0}$		0,02503	0,00041	0,00000
	$\mathbf{1}$		0,09734	0,00355	0,00006
	$\mathbf{2}$		0,18387	0,01509	0,00041
$\mathbf{3 5}$	$\mathbf{3}$		0,22473	0,04148	0,00195
	$\mathbf{4}$		0,19976	0,08297	0,00669
	$\mathbf{5}$		0,13762	0,12860	0,01778
	$\mathbf{6}$		0,07645	0,16075	0,03810

	0	0,02253	0,00032	0,00000	
	1	0,09011	0,00292	0,00004	
	2	0,17522	0,01278	0,00031	
36	3	0,22065	0,03620	0,00149	
	4	0,20226	0,07467	0,00527	
	5	0,14383	0,11947	0,01445	
	6	0,08257	0,15432	0,03200	

	$\mathbf{0}$		0,02028	0,00026	0,00000
	$\mathbf{1}$		0,08336	0,00240	0,00003
	$\mathbf{2}$		0,16671	0,01081	0,00023
$\mathbf{3 7}$	$\mathbf{3}$		0,21611	0,03152	0,00114
	$\mathbf{4}$		0,20410	0,06698	0,00414
	$\mathbf{5}$		0,14967	0,11051	0,01170
	$\mathbf{6}$		0,08870	0,14735	0,02674

	0	0,01642	0,00017	0,00000	
	1	0,07117	0,00162	0,00002	
	2	0,15024	0,00769	0,00012	
39	3	0,20589	0,02373	0,00065	
	4	0,20589	0,05338	0,00252	
	5	0,16013	0,09342	0,00757	
	6	0,10083	0,13235	0,01839	

	0	0,01478	0,00013	0,00000	
	1	0,06569	0,00133	0,00001	
	2	0,14233	0,00648	0,00009	
40	3	0,20032	0,02052	0,00050	
	4	0,20589	0,04745	0,00196	
	5	0,16471	0,08541	0,00606	
	6	0,10676	0,12456	0,01514	

Erwartungshorizont

	Lösungsskizze	Zuordnung, Bewertung		
		I	II	III
a)	Es sei X die Anzahl der stornierten Flüge (für einen bestimmten Flugtermin). X ist nach Annahme binomialverteilt mit $n=35$ und $p=0,2$ $\begin{aligned} & P(X=7)=\binom{35}{7} \cdot 0,2^{7} \cdot 0,8^{28} \approx 16,6 \% \\ & P(X \leq 5)=\sum_{k=0}^{5}\binom{35}{k} \cdot 0,2^{k} \cdot 0,8^{(35-k)} \approx 27,21 \% \\ & P(X \geq 6)=1-P(X \leq 5) \approx 72,79 \% \end{aligned}$	20		
b)	Die Agentur hat von den regulären Buchern feste Einnahmen in Höhe von $35 \cdot 300 €=10.500 €$. Die Anzahl der Stornierungen hat den Erwartungswert der entsprechenden Binomialverteilung, also $35 \cdot 0,2=7$. Für jede solche Person kann nach Voraussetzung ein Last-Minute-Angebot für $250 €$ verkauft werden. Also entstehen zusätzliche erwartete Einnahmen von $1750 €$. (Hier kann mit der Linearität des Erwartungswertes oder auch „naiv" argumentiert werden). Insgesamt kann die Agentur also $12.250 €$ pro Reisetermin erwarten.		20	
c)	Im ersten Falle hat die Agentur $40 \cdot 300 €=12000 €$ Einnahmen von den regulären Buchern und $5 \cdot 250 €=1.250 €$ von den Last-Minute-Buchern, also insgesamt $13.250 €$. Im zweiten Falle hat die Agentur $12.000 €$ Einnahmen von den regulären Buchern, keine Last-Minute-Einnahmen und zusätzliche Kosten wegen der 5 Überbuchungen von $5 \cdot 400 €=2.000 €$, also eine Bilanz von nur $10.000 €$.	10	10	
d)	Mit einer Wahrscheinlichkeit von $(1-0,2)^{40}=0,8^{40} \approx 0,013 \%$ kommen alle. Es kommt zu Überbuchungen, wenn entweder 0 oder 1 ... oder 4 Kunden stornieren ($X<5$) . Die zugehörigen Wahrscheinlichkeiten entnimmt man der gegebenen Tabelle für die Binomialverteilung für $n=40$. Aufsummierung ergibt: $P \approx 0,07591 \approx 7,6 \%$ Mit 7,6 \%-iger Wahrscheinlichkeit kommt es zum Überbuchungsfall.		20	5

	Lösungsskizze	Zuordnung, Bewertung		
		I	II	III
e)	Es sind folgende Beträge zu berücksichtigen: Die festen Einnahmen von 40 Buchern zu je $300 €$ In den Fällen ohne Überbuchung ($X \geq 5$) zusätzliche Einnahmen von $X-5$ Last-Minute-Kunden zu je $250 €$. Da diese Fälle nicht sicher, sondern mit den Wahrscheinlichkeiten der $\mathrm{B}(40 ; 0,2 ; X)$-Binomialverteilung auftreten, ist hier der entsprechende Erwartungswert auszurechnen. Im Überbuchungsfall $(X<5)$ zusätzliche Ausgaben von $5-X$ überzähligen Kunden zu je $400 €$. Da auch diese Fälle nicht sicher, sondern mit den Wahrscheinlichkeiten der $\mathrm{B}(40 ; 0,2 ; X)$-Binomialverteilung auftreten, ist auch hier der entsprechende Erwartungswert auszurechnen. Gegenüber dem Wert von b) ist der Wert $12.733 €$ eine Steigerung der Bilanzerwartung von knapp $500 €$, die Überbuchungsmethode lohnt sich also aus der Sicht der Agentur. Für Korrektoren nachfolgend die gesamte Rechnung zur Information, die zu den erwarteten Einnahmen von $12.733 €$ führt: Einnahmen von $40 \cdot 300 €=12.000 €$ stehen fest. Bei X Stornierungen können X-5 Last-Minute-Flüge verkauft werden. Da X binomialverteilt ist, hätten diese Verkaufseinnahmen über alle k einen Erwartungswert von $250 \cdot(40 \cdot 0,2-5) €=750 €)$, allerdings schlagen in den Überbuchungsfällen ($X<5$, also $k=0$, ..., 4) ja keine ,,negativen Last-MinuteEinnahmen " zu Buche, diese müssen also gegengerechnet werden mit $250 € \cdot \sum_{k=0}^{4}(5-k) \cdot\binom{40}{k} \cdot 0,2^{k} \cdot 0,8^{40-k} \approx 28,49 €$ Andererseits entstehen bei X Stornierungen in den Überbuchungsfällen ($X<5$ also $k=0, \ldots, 4$) Zusatzkosten in Höhe von $(5-k) \cdot 400 €$. Da X binomialverteilt ist, beträgt der Erwartungswert der Zusatzkosten: $E(Z)=400 € \cdot \sum_{k=0}^{4}(5-k) \cdot\binom{40}{k} \cdot 0,2^{k} \cdot 0,8^{55-k} \approx 45,57 €$ Die letzten beiden Terme können auch zusammengefasst werden zu Kosten von $150 € \cdot \sum_{k=0}^{4}(5-k) \cdot\binom{40}{k} \cdot 0,2^{k} \cdot 0,8^{55-k} \approx 17,08 €$ Also gilt für den Erwartungswert der Bilanz: $\mathrm{E} \approx 12.000 €+750 €-17,08 €=12.732,92 €$			15
		30	50	20

III. 2 Thermoschalter

Der Konzern „Thermosicherheit" stellt Thermoschalter in Massenproduktion her. Jeder Thermoschalter ist mit einer Wahrscheinlichkeit von 10% fehlerhaft. Der Fehler besteht darin, dass der Thermoschalter erst bei einer zu hohen Temperatur auslöst, also die Stromzufuhr zu spät unterbricht. Es wird eine Stichprobe von 50 Schaltern aus der laufenden Produktion entnommen.
Dabei soll angenommen werden, dass die Anzahl der fehlerhaften Schalter in der Stichprobe binomialverteilt ist ($n=50, p=0,1$).
a) Bestimmen Sie den Erwartungswert der Anzahl fehlerhafter Schalter in der Stichprobe.

Berechnen Sie (ohne Tafelwerk) die Wahrscheinlichkeit dafür, dass von den 50 Schaltern genau 5 fehlerhaft sind.
Bestimmen Sie die Wahrscheinlichkeit dafür, dass von den 50 Schaltern höchstens 5 fehlerhaft sind.
b) Nennen Sie Gründe, warum man annehmen kann, dass die Anzahl der fehlerhaften Schalter in der Stichprobe binomialverteilt ist ($n=50, p=0,1$).

Die Firma „Maschinenfix" ist Kunde des Konzerns „Thermosicherheit". Sie stellt Maschinen her, die sie vor Überhitzung schützen möchte. In jede dieser Maschinen baut sie 2 Thermoschalter in Reihe ein, d.h. die Stromzufuhr wird genau dann unterbrochen, wenn einer der Schalter oder auch beide zugleich auslösen.
c) Bestimmen Sie die Wahrscheinlichkeit dafür, dass bei einer neu gebauten Maschine der Firma „Maschinenfix" im Falle einer Überhitzung die Stromzufuhr tatsächlich unterbrochen wird.
d) Bei jeder neu gebauten Maschine ist die Thermosicherung ja mit einer Wahrscheinlichkeit von 1% defekt. Bestimmen Sie die Wahrscheinlichkeit, dass bei hundert neu gebauten Maschinen in mindestens einer Maschine die Thermosicherung defekt ist.
e) Der Konzern „Thermosicherheit" möchte die Qualität der Schalterproduktion erhöhen. Dazu wird ein Team beauftragt, entsprechende Maßnahmen zu ergreifen. Falls der Anteil der fehlerhaften Schalter deutlich gesenkt werden kann, soll das Team eine großzügige Prämie erhalten. Zur Überprüfung der Qualitätsverbesserung wird eine Stichprobe vom Umfang 50 der neuen Produktion entnommen. Wenn sich unter diesen 50 Schaltern höchstens 3 fehlerhafte befinden, soll das Team die Prämie erhalten.

- Nehmen Sie an, dass überhaupt keine Qualitätsverbesserung eingetreten ist und bestimmen Sie die Wahrscheinlichkeit dafür, dass das Team die Prämie erhält.
- Nehmen Sie andererseits an, dass eine große Qualitätsverbesserung eingetreten ist und der Anteil der fehlerhaften Schalter auf 5% gesunken ist und bestimmen Sie die Wahrscheinlichkeit dafür, dass dem Team die Prämie verweigert wird.

Die Firma „Maschinenfix" produziert die Maschinen mit den eingebauten Thermoschaltern in großer Stückzahl. Überhitzungen ihrer Maschinen treten leider häufiger auf. Die Thermoschalter lassen sich auch nicht vorher testen. Überhitzungen der Maschinen, die nicht durch die Thermoschalter verhindert werden, führen zu Maschinenschäden und sind sehr teuer.
f) Begründen Sie, dass auch eine bessere Produktionsqualität des Konzerns „Thermosicherheit" mit nur 5\% fehlerhaften Schaltern die Probleme der Firma „Maschinenfix" nicht lösen kann. Geben Sie begründet eine bessere Möglichkeit an, den Schutz vor einem Maschinenschaden durch Überhitzung zu erhöhen.

Erwartungshorizont

	Lösungsskizze	Zuordnung, Bewertung		
		1	II	III
a)	Den Erwartungswert bestimmt man als $n \cdot p=5$. Die Wahrscheinlichkeit für genau 5 fehlerhafte Schalter beträgt $P=\binom{50}{5} \cdot 0,1^{5} \cdot 0,9^{45} \approx 18,49 \%$. Die Rechnung kann über den entsprechenden Term der Binomialverteilung mit dem Taschenrechner erfolgen. Aus dem Tafelwerk liest man ab, dass die Wahrscheinlichkeit für höchstens 5 fehlerhafte Schalter ungefähr 61,61 \% beträgt.	20	5	
b)	Da es sich um eine Massenproduktion geht, kann man so rechnen, als ob es sich um ein Ziehen mit Zurücklegen handeln würde. Das Auftreten von Fehlern im Produktionsprozess wird wegen regelmäßiger Wartung als zufällig angenommen. Dadurch ist die Annahme der Unabhängigkeit im Produktionsprozess gerechtfertigt.			10
c)	Das Gegenereignis zu dem betrachteten Ereignis ist, dass beide Schalter versagen. Die Wahrscheinlichkeit dafür ist $0,1^{2}=0,01$. Also ist die Wahrscheinlichkeit, dass die Stromzufuhr unterbrochen wird, 99%.	5	10	
d)	Die Wahrscheinlichkeit, dass es bei 100 Maschinen zu mindestens einer Überhitzung kommt, berechnet man durch $1-0,99^{100} \approx 1-0,3660=63,4 \%$.		15	
e)	Es muss mit $p=0,1$ gerechnet werden und man liest wie in Teil b) die Wahrscheinlichkeit für höchstens 3 fehlerhafte Schalter ab: 0,2503 . Also erhält das Team die Prämie mit einer Wahrscheinlichkeit von ungefähr 25% zu Unrecht. Für die zweite Frage muss mit $p=0,05$ gerechnet werden und man liest wie in Teil b) die Wahrscheinlichkeit für höchstens 3 fehlerhafte Schalter ab: 0,7604. Wenn es mehr fehlerhafte Schalter gibt, so erhält das Team die Prämie zu Unrecht nicht. Die Wahrscheinlichkeit dafür ist also $1-0,7604 \approx 24 \%$		20	
f)	Wenn man z.B. mit 100 Maschinen wie in Teil d) rechnet, erhält man $1-\left(1-0,05^{2}\right)^{100}=1-0,9975^{100}=1-0,778 \approx 22 \%$. Dieser Wert ist ziemlich hoch und kann von der Firma „Maschinenfix" unter den genannten Bedingungen nicht akzeptiert werden. Der Schutz wird deutlich erhöht, wenn die Firma in ihre Maschinen 3 oder sogar 4 Schalter in Reihe einbaut. ($1-0,1^{3}=0,999 ; 1-0,05^{3}=0,999875 ; \ldots$). Ein Maschinenschaden würde dann im Mittel sehr viel seltener auftreten.			15
	Insgesamt 100 BWE	25	50	25

