ANALYSIS 1

I. 1 Vier ganzrationale Funktionen

Gegeben sind die ganzrationalen Funktionen f_{1} und f_{2} mit

$$
f_{1}(x)=-x^{3}+x^{2} \quad \text { und } \quad f_{2}(x)=-2 x^{3}+4 x^{2} \text { mit } x \in \mathbb{R}
$$

sowie ihre grafische Darstellung (s. Anlage).
a) Bestimmen Sie für beide Funktionen rechnerisch die Extremstellen und die Wendestellen. Geben Sie an, welcher Graph (s. Anlage) zu welcher Funktion gehört.
b) Berechnen Sie alle Schnittpunkte der Graphen von f_{1} und f_{2} und ermitteln Sie das Maß der von den Graphen eingeschlossenen Fläche.
c) Die in b) betrachtete Fläche liegt teilweise oberhalb und teilweise unterhalb der x-Achse. Bestimmen Sie den prozentualen Anteil der Fläche, die oberhalb der x-Achse liegt.
d) Eine weitere Funktion dritten Grades wird gesucht. Sie soll f_{3} heißen, Nullstellen bei 0 und 3 und Extremstellen bei 0 und 2 haben. Außerdem soll diese Funktion an der Stelle 1 den Funktionswert 6 haben.
Bestimmen Sie die Funktionsgleichung von f_{3}.

Hinweis:

Sie können aus den Funktionsgleichungen von f_{1} und f_{2} eine Vermutung über den Funktionsterm von f_{3} anstellen und die angegebenen Daten bestätigen. Sie können aber auch aus den zu f_{3} gemachten Angaben die Koeffizienten der Funktion dritten Grades bestimmen.
e) Die Funktionsterme von f_{1}, f_{2} und f_{3} haben Gemeinsamkeiten, d.h. die Nummerierung taucht in einer bestimmten Systematik in den Funktionstermen auf.
Bestimmen Sie unter Einbeziehung dieser Gemeinsamkeiten die Gleichung einer Funktion f_{5}, die ebenfalls eine ganzrationale Funktion dritten Grades ist.

Aus den einzelnen Funktionstermen kann man jeweils die Lage der Nullstellen, der Extremstellen und der Wendestelle des zugehörigen Graphen direkt ablesen.
Bestimmen Sie - ohne Begründung - die Nullstellen, die Extremstellen und die Wendestelle von f_{5}.

Anlage zu Aufgabe „Vier ganzrationale Funktionen":

Erwartungshorizont

	Lösungsskizze	Zuordnung, Bewertung		
		I	II	III
a)	Bestimmung der Extrem- und Wendestellen von f_{1} : Es gilt: $f_{1}^{\prime}(x)=-3 x^{2}+2 x, \quad f_{1}^{\prime \prime}(x)=-6 x+2, \quad f_{1}^{\prime \prime \prime}(x)=-6$. Die Nullstellen der 1 . Ableitung sind 0 und $\frac{2}{3}$. Aus der Grafik bzw. mit Hilfe der 2. Ableitung ($f_{1}^{\prime \prime}(0)=2 \neq 0$ und $\left.f_{1}^{\prime \prime}\left(\frac{2}{3}\right)=-2 \neq 0\right)$ folgt, dass f_{1} die Extremstellen 0 und $\frac{2}{3}$ hat. Hinweis: Es ist zulässig, mit Hilfe der grafischen Darstellung zu argumentieren. Die Angabe der Koordinaten von Hoch- bzw. Tiefpunkt ist nicht gefordert. Die Nullstelle der 2. Ableitung ist $\frac{1}{3}$. Aus der Grafik bzw. mit Hilfe der 3. Ableitung $\left(f_{1}^{\prime \prime \prime}(x)=-6 \neq 0\right)$ folgt, dass f_{1} die Wendestelle $\frac{1}{3}$ hat. Bestimmung der Extrem- und Wendestellen von f_{2} : Es gilt: $f_{2}^{\prime}(x)=-6 x^{2}+8 x, f_{2}^{\prime \prime}(x)=-12 x+8, \quad f_{2}^{\prime \prime \prime}(x)=-12$. Die Nullstellen der 1. Ableitung sind 0 und $\frac{4}{3}$. Aus der Grafik bzw. mit Hilfe der 2. Ableitung ($f_{2}^{\prime \prime}(0)=8 \neq 0$ und $\left.f_{2}^{\prime \prime}\left(\frac{4}{3}\right)=-8 \neq 0\right)$ folgt, dass f_{2} die Extremstellen 0 und $\frac{4}{3}$ hat. Die Nullstelle der 2. Ableitung ist $\frac{2}{3}$. Aus der Grafik bzw. mit Hilfe der 3. Ableitung $\left(f_{2}^{\prime \prime \prime}(x)=-12 \neq 0\right)$ folgt, dass f_{2} die Wendestelle $\frac{2}{3}$ hat. Zuordnung der Graphen: Der im Intervall]- $; 3$ [oberhalb verlaufende Graph ist der der Funktion f_{2}. Hier kommt es nur auf die Zuordnung der Funktionen zu ihren Graphen an. Daher sind auch weniger präzise Formulierungen (z.B. ,,der Graph oben gehört zu f_{2} ") zugelassen.			

	Lösungsskizze	Zuordnung, Bewertung		
		I	II	III
		10	20	
b)	Bestimmung der Schnittpunkte: $\begin{aligned} f_{1}(x)=f_{2}(x) & \Leftrightarrow-x^{3}+x^{2}=-2 x^{3}+4 x^{2} \Leftrightarrow x^{3}-3 x^{2}=0 \\ & \Leftrightarrow x=0 \vee x=3 . \end{aligned}$ Es gilt $f_{1}(0)=f_{2}(0)=0 \quad$ und $\quad f_{1}(3)=f_{2}(3)=-18$. Die Graphen von f_{1} und f_{2} schneiden sich in den Punkten $S_{1}(0 \mid 0)$ und $S_{2}(3 \mid-18)$. Bestimmung des Flächenmaßes: Eine Stammfunktion zu $\left(f_{2}-f_{1}\right)(x)=-x^{3}+3 x^{2}$ ist F mit $F(x)=-\frac{1}{4} x^{4}+x^{3}$. Es gilt also: $A=\left\|\int_{0}^{3}\left(f_{2}(x)-f_{1}(x)\right) d x\right\|=\left\|\left[-\frac{1}{4} x^{4}+x^{3}\right]_{0}^{3}\right\|=\left\|-\frac{81}{4}+27-0\right\|=\frac{27}{4}=6,75 .$	10	10	
c)	Man kann beispielsweise den Inhalt der Fläche oberhalb der x-Achse als Differenz zweier Integrale berechnen. Die Integrationsgrenzen sind die aus der grafischen Darstellung (s. Anlage) abzulesenden Nullstellen. $\begin{aligned} A_{1} & =\left\|\int_{0}^{2} f_{2}(x) d x\right\|-\left\|\int_{0}^{1} f_{1}(x) d x\right\| \\ & =\left\|\left[-0,5 x^{4}+\frac{4}{3} x^{3}\right]_{0}^{2}\right\|-\left\|\left[-0,25 x^{4}+\frac{1}{3} x^{3}\right]_{0}^{1}\right\| \\ & =\left\|-8+\frac{32}{3}\right\|-\left\|-\frac{1}{4}+\frac{1}{3}\right\| \end{aligned}$			

	Lösungsskizze	Zuordnung, Bewertung		
		I	II	III
	$\begin{aligned} A_{1} & =\frac{8}{3}-\frac{1}{12} \\ & =\frac{31}{12} \end{aligned}$ Betragsstriche sind hier nicht zwingend erforderlich, da die Graphen in dem jeweils betrachteten Intervall oberhalb der x-Achse verlaufen. Anteil der Fläche an der Gesamtfläche: $A_{1}: A=\frac{31}{12}: \frac{27}{4}=\frac{31}{81}=0,3827 \ldots$ Der Anteil der oberhalb der x-Achse liegenden Fläche an der Gesamtfläche beträgt ca. 38,3 \%.		15	10
d)	1. Variante: Der Vergleich der Funktionsterme von f_{1} und f_{2} legt die Vermutung nahe: $f_{3}(x)=-3 x^{3}+9 x^{2}$. Die explizite Angabe der gemeinsamen ,,Form" durch $f_{k}(x)=-k \cdot x^{3}+k^{2} \cdot x^{2}$, $k>0$, wird nicht verlangt. (1) Nullstellen bei 0 und 3: $\quad f_{3}(0)=0$ ist klar, $f_{3}(3)=-3 \cdot 27+9 \cdot 9=0$ (2) Extremstellen bei 0 und 2: $f_{3}^{\prime}(x)=-9 x^{2}+18 x$ $f_{3}^{\prime}(0)=0$ ist klar, $f_{3}^{\prime}(2)=-9 \cdot 4+18 \cdot 2=0$ (3) $f_{3}(1)=-3+9=6$, was zu zeigen war. 2. Variante: Umgekehrt lassen sich die Koeffizienten von $f_{3}(x)=a x^{3}+b x^{2}+c x+d$ aus den genannten Bedingungen ermitteln: (1) $f_{3}(0)=0 \Rightarrow d=0$, (2) $f_{3}^{\prime}(0)=0 \Rightarrow c=0$, (3) $f_{3}(3)=0 \Rightarrow 27 a+9 b=0$, (4) $f_{3}(1)=6 \Rightarrow a+b=6$. Gleichung (4') $b=6-a$ eingesetzt in (3) ergibt $27 a+9(6-a)=0$ und $a=-3$. Damit ist $b=9$. Die Gleichung der Funktion lautet: $f_{3}(x)=-3 x^{3}+9 x^{2}$.		15	

	Lösungsskizze	Zuordnung, Bewertung		
		I	II	III
e)Man kann aus den Ergebnissen von a) und den Angaben in d) folgern: $f_{5}(x)=-5 x^{3}+25 x^{2}$, Nullstellen 0 und 5, Extremstellen 0 und $\frac{2}{3} \cdot 5=\frac{10}{3}$, Wendestelle $\frac{5}{3}$.				

I. 2 Chemieunternehmen

In einem Chemieunternehmen wird die Leitung einer Abteilung von einem neuen Mitarbeiter übernommen. Die Abteilung produziert flüssige Waschmittel. Die Produktion liegt derzeit bei täglich 10 Tonnen und sollte nach Ansicht des neuen Abteilungsleiters erhöht werden. Die Firmenleitung wünscht von ihm eine Auskunft über die zu erwartenden Produktionskosten und Gewinne. Der Abteilungsleiter wirft einen Blick in die Produktionsunterlagen und findet nebenstehende Daten, die bereits in das beigefügte Koordinatensystem (s. Anlage) eingetragen sind.

produzierte Menge in Tonnen	verursachte Kosten in GE (Geldeinheiten)
2	600
10	1272
18	1944

a) Der neue Abteilungsleiter sieht hier einen linearen Zusammenhang. Bestätigen Sie diesen Zusammenhang, indem Sie durch eine Rechnung zeigen, dass die drei Punkte auf einer Geraden liegen.
b) Bei einem genaueren Blick in die Unterlagen findet der Abteilungsleiter zusätzliche Daten (siehe nebenstehende Tabelle.
Zeichnen Sie diese beiden zusätzlichen Daten in das beigefügte Koordinatensystem ein.

produzierte Menge in Tonnen	verursachte Kosten in GE (Geldeinheiten)
5	1047
20	2472

Man sieht „mit bloßem Auge", dass der lineare Ansatz aus Aufgabenteil a) jetzt offenbar nicht zutrifft. Skizzieren Sie nun einen möglichen und sinnvollen Graphen durch diese 5 Punkte.

Dieser Graph beschreibt den Zusammenhang ,,produzierte Menge in Tonnen \rightarrow verursachte Kosten in GE", die so genannte Kostenfunktion.
c) Der Abteilungsleiter findet in den Unterlagen seines Vorgängers den Funktionsterm für die Kostenfunktion K und stellt fest, dass alle fünf Wertepaare zu K gehören:

$$
K: x \rightarrow x^{3}-30 x^{2}+320 x+72 .
$$

Zeigen Sie, dass K keine Extremstellen besitzt und erläutern Sie, warum diese Eigenschaft für eine Kostenfunktion typisch ist.
d) Aus einer Marktanalyse weiß die Firmenleitung, dass der erzielbare Preis pro Tonne für das Waschmittel in Abhängigkeit von der absetzbaren Menge x durch die folgende Funktion p beschrieben werden kann: $p: x \rightarrow-5 x+330$ bzw. $p: x \rightarrow-5 \cdot(x-66)$
Der Erlös E ergibt sich aus dem Produkt „Menge mal Preis" $(E: x \rightarrow x \cdot p(x)$).
Bestimmen Sie die Gleichung der Erlösfunktion E und zeigen Sie, dass E ein Maximum annimmt, wenn die produzierte Menge 33 Tonnen beträgt.
e) Der erzielte Gewinn G in Abhängigkeit von der produzierten Menge x ergibt sich als Differenz aus dem Erlös E und den entstehenden Kosten K, also $G(x)=E(x)-K(x)$.
Bestimmen Sie die Gleichung der Gewinnfunktion G.
Bestimmen Sie, bei welcher produzierten Menge der Gewinn G maximal wird, und berechnen Sie den maximalen Gewinn. Beide Angaben sollen in der Antwort auf 2 Nachkommastellen gerundet werden.
f) Beurteilen Sie vor dem Hintergrund Ihrer Ergebnisse aus den vorangegangenen Aufgabenteilen das Vorhaben des Abteilungsleiters, die bisherige Produktion von täglich 10 Tonnen deutlich zu erhöhen.

Anlage zur Aufgabe „Chemieunternehmen":

Erwartungshorizont

	Lösungsskizze	Zuordnung, Bewertung		
		I	II	III
a)	Es gibt verschiedene Möglichkeiten zur Bearbeitung: So kann z.B. der Funktionsterm einer linearen Funktion aus zwei der Datenpaare bestimmt und mit dessen Hilfe das dritte Datenpaar überprüft werden: $g(x)=m \cdot x+n$ Aus den Punkten $(2 \mid 600)$ und $(10 \mid 1272)$ erhält man: (1) $600=m \cdot 2+n$ (2) $1272=m \cdot 10+n$ Danach gilt: $8 m=672$ und $m=84$ sowie $n=432$. Die Gerade durch die beiden Punkte hat die Gleichung $g(x)=84 x+432$. Überprüfung für ($18 \mid 1944$): $1944=84 \cdot 18+432$ ist richtig. Die drei gegebenen Punkte liegen also auf einer Geraden. Man könnte auch den mittleren Kostenzuwachs m (die Steigung von g) bei Erhöhung der Produktion um eine Tonne berechnen: Für die Punkte $(2 \mid 600)$ und $(10 \mid 1272)$ erhält man: $m=\frac{1272-600}{10-2}=84$. Für die Punkte $(10 \mid 1272)$ und $(18 \mid 1944)$ erhält man: $m=\frac{1944-1272}{18-10}=84$, also das gleiche Ergebnis. Die Punkte liegen auf einer Geraden.	15		
b)	Als Skizze wird nur der Graph einer monoton steigenden Funktion durch die 5 Punkte erwartet. Beispiel:	10		

	Lösungsskizze	Zuordnung, Bewertung		
		I	II	III
c)	Die Gleichung der Ableitungsfunktion von K lautet: $K^{\prime}(x)=3 x^{2}-60 x+320$ Für $K^{\prime}(x)=0$ und damit $3 x^{2}-60 x+320=0$ erhält man $x_{1,2}=10 \pm \sqrt{100-\frac{320}{3}}$. Die Diskriminante der quadratischen Gleichung ist negativ. Die Gleichung hat damit keine (reellen) Lösungen. Folglich hat K keine Extremstellen. Dies bedeutet, dass K als kubische Funktion mit positivem Leitkoeffizienten streng monoton wachsend ist. Dies ist charakteristisch für die betriebliche Kostenentwicklung, da bei Erhöhung der Produktionsmenge x stets mit erhöhten Kosten $K(x)$ zu rechnen ist.		15	5
d)	Die Gleichung der Erlösfunktion lautet $E(x)=-5 x \cdot(x-66)=-5 x^{2}+330 x$. Hierbei handelt es sich um die Gleichung einer quadratischen Funktion mit den Nullstellen $x_{1}=0$ und $x_{2}=66$. Da bei einer quadratischen Funktion die Nullstellen symmetrisch zur x-Koordinate des Scheitelpunktes liegen und der Graph der Erlösfunktion E eine nach unten geöffnete Parabel ist, besitzt die Erlösfunktion somit ein Maximum mit positivem Funktionswert an der Stelle $x=33$. Zulässig, aber weniger elegant ist die Berechnung der Extremstelle mit Hilfe der Ableitungen.		10	
e)	Gemäß Aufgabe lautet die Gleichung der Gewinnfunktion: $G(x)=E(x)-K(x)=-x^{3}+25 x^{2}+10 x-72 .$ Hieraus erhält man $G^{\prime}(x)=-3 x^{2}+50 x+10$ Der Ansatz $G^{\prime}(x)$ führt auf eine quadratische Gleichung mit den Lösungen $x_{1}=\frac{25}{3}-\frac{1}{3} \sqrt{655} \quad \text { und } \quad x_{2}=\frac{25}{3}+\frac{1}{3} \sqrt{655} .$ Für die gesuchte Maximalstelle kommt wegen $x \geq 0$ nur die Stelle $x_{2} \approx 16,86$ in Frage. Aus dem typischen Verlauf einer kubischen Funktion mit negativem Leitkoeffizienten schließt man, dass ein Maximum nur bei $x_{2} \approx 16,86$ liegen kann. Oder: Die Überprüfung an Hand der zweiten Ableitung der Gewinnfunktion ergibt: $G^{\prime \prime}(x)=-6 x+50$ und $G^{\prime \prime}\left(x_{2}\right)<0$. Somit wird der Gewinn bei der produzierten Menge x_{2} maximal. Der maximale Gewinn beträgt $G(16,86) \approx 2410,47 \mathrm{GE}$.		30	
f)	Unter der Annahme einer ganzrationalen Funktion 3. Grades als Kostenfunktion erhält man den maximalen Gewinn bei einer Produktion von knapp 17 Tonnen Waschmittel. Der neue Abteilungsleiter hat also Recht mit seiner Forderung, die Produktion müsse erhöht werden.			15
	Insgesamt 100 BWE	25	55	20

ANALYSIS 3

I. 3 Bevölkerungsentwicklung

In einer Kleinstadt hat der einzige große industrielle Arbeitgeber sein Werk geschlossen. Daraufhin ziehen viele qualifizierte Arbeitskräfte mit ihren Familien aus dieser Kleinstadt weg. Die Politiker versuchen durch Schaffung von Arbeitsplätzen in anderen Bereichen langfristig neue Bewohner zu gewinnen. Es dauert allerdings eine gewisse Zeit, bis diese Maßnahme erste Erfolge zeigt.
Die Statistiker tragen die Einwohnerzahl regelmäßig in eine Grafik ein, wobei die Einteilung der x-Achse in Jahrzehnten erfolgt und die der y-Achse in zehntausend Einwohner.
Es liegt ein Arbeitsblatt mit der Grafik für die ersten drei Jahrzehnte nach Schließung des Werkes bei.
a) Beschreiben Sie den Graphen im Hinblick auf folgende Fragen:

Wie viele Einwohner hatte die Kleinstadt bei Schließung des Werkes?
Wie hat sich die Einwohnerzahl im Laufe der Zeit entwickelt?
Die aufgezeichnete Kurve ist Teil des Graphen der Funktion f mit

$$
f(x)=-5 e^{-0.5 x}+6 e^{-3 x}+6 .
$$

b) Untersuchen Sie die Funktion f auf Extrempunkte.

Hinweis: Die Gleichung $f^{\prime}(x)=0$ ist äquivalent zu der Gleichung $e^{-0.5 x}=7,2 \cdot e^{-3 x}$ und damit auch äquivalent zu der Gleichung $-0,5 x=\ln (7,2)-3 x$.
c) Untersuchen Sie die Funktion f auf Wendestellen. (Verwenden Sie zur Berechnung die in b) vorgestellte Methode).
d) Interpretieren Sie die Bedeutung des Extremwertes und die Bedeutung der Wendestelle im Sachzusammenhang der Aufgabe.
e) Bestimmen Sie k so, dass F mit

$$
F(x)=10 \cdot e^{-0,5 x}+k \cdot e^{-3 x}+6 x
$$

eine Stammfunktion von f ist.
Bestimmen Sie das Integral von f über dem Intervall [0; 1,5].
Mit diesem Wert sollen Sie folgende Aufgabe bearbeiten:
15 Jahre nach der Werkschließung konnte die Stadt Fördergelder beantragen. Diese richteten sich nach der durchschnittlichen Einwohnerzahl (auf Tausend gerundet) der Stadt in diesen 15 Jahren. Bestimmen Sie die Höhe der Fördermittel, die die Stadt damals erhielt, wenn es für jeden Einwohner 1000 DM an Fördergeldern gab.
f) Skizzieren Sie den weiteren Verlauf des Graphen (s. Anlage) und geben Sie eine begründete Prognose über die weitere Entwicklung der Einwohnerzahl ab, unter der Bedingung, dass sie weiterhin der Funktion f genügt.
Ermitteln Sie die größtmögliche Einwohnerzahl, mit der unter diesen Bedingungen die Stadtentwickler rechnen müssten.
Beschreiben Sie Gründe, warum sich die Einwohnerzahl vermutlich anders entwickeln wird.

Anlage zur Aufgabe „Bevölkerungsentwicklung":

Erwartungshorizont

	Lösungsskizze	Zuordnung, Bewertung		
		I	II	III
a)	Zum Zeitpunkt der Werksschließung hat die Kleinstadt ca. 70.000 Einwohner, danach nimmt die Einwohnerzahl stark ab, das Minimum wird nach ca. 8 Jahren erreicht, danach steigt sie langsam wieder an.	5	10	
b)	Untersuchung auf Extrempunkte: $\begin{aligned} & f^{\prime}(x)=2,5 e^{-0,5 x}-18 e^{-3 x} \\ & f^{\prime}(x)=0: \quad 2,5 e^{-0,5 x}-18 e^{-3 x}=0 \Leftrightarrow 2,5 e^{-0,5 x}=18 e^{-3 x} \end{aligned}$ $\begin{aligned} \text { (Rechnung erst ab hier erwartet) } & \Leftrightarrow e^{-0,5 x}=7,2 e^{-3 x} \\ & \Leftrightarrow \quad-0,5 x=\ln 7,2-3 x \\ & \Leftrightarrow \quad 2,5 x=\ln 7,2 \\ & \Leftrightarrow \quad x=\frac{\ln 7,2}{2,5}=0,7896 \ldots \end{aligned}$ Der Grafik kann entnommen werden, dass f an dieser Stelle ein Minimum hat. Der Nachweis kann aber auch über die 2. Ableitung erfolgen: $f^{\prime \prime}\left(\frac{\ln 7,2}{2,5}\right)=-1,25 e^{-0,5 \cdot \frac{\ln 7,2}{2,5}}+54 e^{-3 \cdot \frac{\ln 7,2}{2,5}}>0 .$ Berechnung des Funktionswertes an der Minimalstelle: $f\left(\frac{\ln 7,2}{2,5}\right)=-5 e^{-0,5 \cdot \frac{\ln 7,2}{2,5}}+6 e^{-3 \cdot \frac{\ln 7,2}{2,5}}+6 \approx 3,19 .$ f hat in $T(0,79 \mid 3,19)$ ein Minimum.	10	15	
c)	Untersuchung auf Wendestellen: $\begin{aligned} & f^{\prime \prime}(x)=-1,25 e^{-0,5 x}+54 e^{-3 x} \\ & \frac{f^{\prime \prime \prime}(x)=0,625 e^{-0,5 x}-162 e^{-3 x}}{f^{\prime \prime}(x)=0:-1,25 e^{-0,5 x}+54 e^{-3 x}}=0 \Leftrightarrow 1,25 e^{-0,5 x}=54 e^{-3 x} \Leftrightarrow e^{-0,5 x}=43,2 e^{-3 x} \\ & \quad-0,5 x=\ln 43,2-3 x \Leftrightarrow 2,5 x=\ln 43,2 \Leftrightarrow x=\frac{\ln 43,2}{2,5} \approx 1,5 . \end{aligned}$ Der Grafik kann entnommen werden, dass f an dieser Stelle eine Wendestelle hat. Der Nachweis kann aber auch über die 3. Ableitung erfolgen: $f^{\prime \prime \prime}(1,5) \neq 0$. Die Funktion f hat die Wendestelle (gerundet) bei 1,5 .		15	

	Lösungsskizze	Zuordnung, Bewertung		
		I	II	III
d)	Der Tiefpunkt gibt den Zeitpunkt mit der geringsten Einwohnerzahl und die dazugehörige Einwohnerzahl an. (Nach ca. 8 Jahren hat die Einwohnerzahl mit etwa 32.000 Einwohnern ihr Minimum erreicht. Danach stieg sie wieder an.) An der Wendestelle steigt die Einwohnerzahl am stärksten. (Nach ca. 15 Jahren hat das Bevölkerungswachstum seinen Höhepunkt erreicht.) Die Klammerpassagen werden von den Prüflingen nicht erwartet.			10
e)	$\begin{aligned} & F(x)=10 \cdot e^{-0,5 x}+k \cdot e^{-3 x}+6 x \\ & F^{\prime}(x)=-5 e^{-0.5 x}-3 k \cdot e^{-3 x}+6 \\ & f(x)=-5 e^{-0.5 x}+6 e^{-3 x}+6 \end{aligned}$ Vergleich der Koeffizienten von F^{\prime} und f : Aus $-3 k=6$ folgt $k=-2$. Danach gilt: $F(x)=10 \cdot e^{-0,5 x}-2 \cdot e^{-3 x}+6 x$. Berechnung des Integrals: $\int_{0}^{1,5} f(x) d x=\left[10 e^{-0,5 x}-2 e^{-3 x}+6 x\right]_{0}^{1,5} \approx 4,724-0,022+9-10+2 \approx 5,70$ Letzter Zwischenschritt nicht verlangt, da die Rechenschritte möglicherweise auf dem Taschenrechner gespeichert waren. Berechnung der durchschnittlichen Einwohnerzahl in diesen 15 Jahren: $\frac{5,70}{1,5}=3,80 .$ Dies entspricht einer durchschnittlichen Einwohnerzahl von etwa 38.000. Die Stadt erhielt Fördermittel in Höhe von etwa 38 Millionen DM.	5	15	

	Lösungsskizze	Zuordnung, Bewertung		
		I	II	III
f)	 Unter diesen Bedingungen würde die Einwohnerzahl immer langsamer steigen und nie den Wert von 60000 Einwohnern übersteigen. Dies erhält man aus der Funktionsvorschrift. Die Einwohnerzahl wird sich wohl anders entwickeln, da z.B. weitere Firmen eröffnen oder schließen könnten, die Alterspyramide sich auswirkt oder wegen der schönen Lage sich die Zuwanderung verstärkt...		5	10
	Insgesamt 100 BWE	20	60	20

II. 1 Zwei Geraden

In einem kartesischen Koordinatensystem sind zwei Geraden gegeben:

$$
g: \vec{x}=\left(\begin{array}{l}
4 \\
6 \\
4
\end{array}\right)+r \cdot\left(\begin{array}{c}
-4 \\
5 \\
4
\end{array}\right) \text { und } \quad h: \vec{x}=\left(\begin{array}{l}
0 \\
6 \\
8
\end{array}\right)+s \cdot\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right), r, s \in \mathbb{R} .
$$

a) Die Gerade g hat mit der $x_{1}-x_{2}$-Ebene den Schnittpunkt $P(8|1| 0)$ und mit der x_{2} - x_{3}-Ebene den Schnittpunkt $R(0|11| 8)$. Zeichnen Sie g, P und R in das beiliegende Koordinatensystem ein. Berechnen Sie die Schnittpunkte Q und S von h mit der $x_{1}-x_{2}$-Ebene bzw. mit der x_{2} - x_{3}-Ebene und zeichnen Sie h, Q und S ebenfalls in das Koordinatensystem ein (s. Anlage).
b) Untersuchen Sie die Lage von g und h zueinander und bestimmen Sie gegebenenfalls den Schnittpunkt.
c) Der Punkt $T(4|6| 4)$ bildet mit den Punkten P und Q das Dreieck D_{1}.

Zeichnen Sie D_{1} in das Koordinatensystem ein.
Weisen Sie nach, dass D_{1} rechtwinklig, aber nicht gleichschenklig ist und berechnen Sie den Flächeninhalt von D_{1}.
d) Der Punkt $T(4|6| 4)$ bildet mit den Punkten R und S das Dreieck D_{2}.

Zeichnen Sie D_{2} in das Koordinatensystem ein.
Beschreiben Sie, wie man nachweisen könnte, dass D_{1} und D_{2} kongruent sind. (Es müssen keine Rechnungen durchgeführt werden.)
e) Betrachten Sie einen Punkt U, der weder auf g noch auf h liegt. Gesucht ist eine Gerade durch U, die g und h in zwei verschiedenen Punkten schneidet.
Beschreiben Sie mit Angabe von Begründungen, wie diese Untersuchung durchgeführt werden kann.
Führen Sie diese Untersuchung für den Punkt $U(3|0| 1)$ durch.

Anlage zur Aufgabe „Zwei Geraden"

Erwartungshorizont

	Lösungsskizze	Zuordnung, Bewertung		
		I	II	III
a)	Zeichnung s.u. Bestimmung von Q : $\begin{aligned} & Q\left(q_{1}\left\|q_{2}\right\| 0\right) \wedge \text { und } Q \in h \\ & 0-s=q_{1} \wedge 6=q_{2} \wedge 8+s=0 \\ & s=-8, q_{1}=8, q_{2}=6 \end{aligned}$ Q hat also die Koordinaten $(8\|6\| 0)$. Bestimmung von S : Aus der Geradengleichung erkennt man, dass S die Koordinaten $(0\|6\| 8)$ hat. Es kann aber auch wie bei der Bestimmung von Q gerechnet werden. Grafische Gesamtdarstellung (enthält auch die Aufgabenteile c) und d)): Für die grafische Gesamtdarstellung können bis zu 10 Punkte vergeben werden. Dieses Punktekontingent ist in den 25 Punkten für Aufgabenteil a) enthalten.	10	15	

	Lösungsskizze	Zuordnung, Bewertung		
		I	II	III
b)	Bestimmung eines möglichen Schnittpunktes V von g und h : $\begin{aligned} & \text { Ansatz: } \vec{x}_{g}=\vec{x}_{h} \Leftrightarrow\left(\begin{array}{l} 4 \\ 6 \\ 4 \end{array}\right)+r \cdot\left(\begin{array}{c} -4 \\ 5 \\ 4 \end{array}\right)=\left(\begin{array}{l} 0 \\ 6 \\ 8 \end{array}\right)+s \cdot\left(\begin{array}{c} -1 \\ 0 \\ 1 \end{array}\right) \\ & -4 r+s=-4 \wedge 5 r=0 \wedge 4 r-s=4 \\ & r=0 \wedge s=-4 \Rightarrow g \text { und } h \text { schneiden sich in } V(4\|6\| 4) . \end{aligned}$ Alternative: Der gemeinsame Punkt V kann auch aus den Geradengleichungen ($r=0$ und $s=-4$) erkannt werden.	10	5	
c)	Zeichnung s. Lösungsskizze zu a). Überprüfung der Rechtwinkligkeit: Es gilt: $\overrightarrow{P Q}=\left(\begin{array}{l}8-8 \\ 6-1 \\ 0-0\end{array}\right)=\left(\begin{array}{l}0 \\ 5 \\ 0\end{array}\right), \quad \overrightarrow{Q T}=\left(\begin{array}{c}4-8 \\ 6-6 \\ 4-0\end{array}\right)=\left(\begin{array}{c}-4 \\ 0 \\ 4\end{array}\right)$ und somit $\overrightarrow{P Q} \cdot \overrightarrow{Q T}=0$. $\Rightarrow D_{1}$ hat in Q einen rechten Winkel. Weiter gilt: $\|\overrightarrow{P Q}\|=5 \wedge\|\overrightarrow{Q T}\|=\sqrt{32} \Rightarrow D_{1}$ ist $\underline{\text { nicht gleichschenklig. }}$ Berechnung der Flächeninhalts: Für den Flächeninhalt eines rechtwinkligen Dreiecks mit den Kathetenlängen a und b gilt: $F(D)=\frac{1}{2} \cdot a \cdot b \Rightarrow F\left(D_{1}\right)=10 \sqrt{2} \approx 14,14(\mathrm{FE})$.		25	
d)	Zeichnung s. Lösungsskizze zu a). Man kann prüfen, ob die beiden Dreiecke in drei Seiten, in zwei Seiten und dem eingeschlossenen Winkel oder in einer Seite und zwei Winkeln übereinstimmen.	5	5	
e)	Man kann prüfen, ob U in der von g und h aufgespannten Ebene E_{2} liegt. Ist dies der Fall, gibt es unendlich viele Geraden mit der angegebenen Eigenschaft. Ist dies nicht der Fall, gibt es keine Gerade mit der angegebenen Eigenschaft. Untersuchung für $U(3\|0\| 1)$: Eine mögliche Darstellung von $E_{2}: \quad \vec{x}=\left(\begin{array}{l}0 \\ 6 \\ 8\end{array}\right)+r \cdot\left(\begin{array}{c}-4 \\ 5 \\ 4\end{array}\right)+s \cdot\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right)$			

Lösungsskizze	Zuordnung, Bewertung		
	I	II	III
Dann gilt: $U \in E_{2} \Leftrightarrow\left(\begin{array}{l}3 \\ 0 \\ 1\end{array}\right)=\left(\begin{array}{l}0 \\ 6 \\ 8\end{array}\right)+r \cdot\left(\begin{array}{c}-4 \\ 5 \\ 4\end{array}\right)+s \cdot\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right)$ Die erste und die dritte Zeile des zugehörigen Gleichungssystems widersprechen sich. U liegt nicht in E_{2}. Es gibt demnach keine Gerade durch U, die g und h außerhalb ihres Schnittpunktes schneidet.		5	20
Insgesamt 100 BWE	25	55	20

II. 2 Konzerthalle

Durch die Eckpunkte

$O_{1}(0\|0\| 0)$	$A_{1}(3\|0,25\| 0)$	$B_{1}(3\|2,25\| 0)$	$C_{1}(0\|2\| 0)$
$O_{2}(0\|0\| 1,5)$	$A_{2}(3\|0,25\| 0,5)$	$B_{2}(3\|2,25\| 1)$	$C_{2}(0\|2\| 2)$

sind Daten für die Skizze einer modernen Konzerthalle im kartesischen Koordinatensystem gegeben, 1 Längeneinheit entspricht 10 m .

Die Punkte O_{1}, A_{1}, B_{1} und C_{1} begrenzen die Grundfläche, die Punkte O_{2}, A_{2}, B_{2} und C_{2} sind die Eckpunkte der Dachfläche.
a) Zeichnen Sie die Konzerthalle in das vorliegende Koordinatensystem ein.

Weisen Sie nach, dass die Eckpunkte der Dachfläche in einer Ebene \boldsymbol{E} liegen, und geben Sie eine Gleichung von \boldsymbol{E} an.
b) Zeigen Sie, dass das Dach die Form eines Rechtecks hat, aber kein Quadrat ist, und bestimmen Sie das Flächenmaß der Dachfläche.
c) Für Gebäude mit einer Grundfläche von mehr als $700 \mathrm{~m}^{2}$ muss eine Extra-Grundflächensteuer bezahlt werden. Ist dies für die Konzerthalle der Fall? Begründen Sie Ihre Antwort.
d) Aus Sicherheitsgründen sollen zwei senkrechte Stützpfeiler s_{1} und s_{2} eingezogen werden. s_{1} stützt das Dach im Mittelpunkt der Dachfläche, s_{2} wird über dem Punkt $P(1|1,5| 0)$ errichtet. Beschreiben Sie, wie man die Längen der beiden Pfeiler berechnen könnte, und bestimmen Sie die Länge des Pfeilers s_{1}.

Anlage zur Aufgabe „Konzerthalle"

1 LE entspricht 10 m .

Erwartungshorizont

	Lösungsskizze	Zuordnung, Bewertung		
		I	II	III
a)	 Bestimmung der Ebene E durch O_{2}, A_{2} und C_{2} : $E: \vec{x}=\left(\begin{array}{c} 0 \\ 0 \\ 1,5 \end{array}\right)+r\left(\begin{array}{c} 3 \\ 0,25 \\ -1 \end{array}\right)+s\left(\begin{array}{c} 0 \\ 2 \\ 0,5 \end{array}\right) ; r, s \in \mathbb{R}$ Prüfung, ob B_{2} in E liegt: Ansatz: $\left(\begin{array}{c} 0 \\ 0 \\ 1,5 \end{array}\right)+r\left(\begin{array}{c} 3 \\ 0,25 \\ -1 \end{array}\right)+s\left(\begin{array}{c} 0 \\ 2 \\ 0,5 \end{array}\right)=\left(\begin{array}{c} 3 \\ 2,25 \\ 1 \end{array}\right) \Leftrightarrow 3 \begin{aligned} 3,25 r+2 s & =2,25 \\ -r+0,5 s & =-0,5 \end{aligned}$ Aus $3 r=3$ folgt: $r=1$. In Gleichung (3) eingesetzt ergibt sich: $s=1$. Probe in Gleichung (2): 2,25 $=2,25$. Also liegt B_{2} in E. Es kann auch ohne Rechnung erkannt werden, dass B_{2} für $r=s=1$ in E liegt.	20	5	

	Lösungsskizze	Zuordnung, Bewertung		
		I	II	III
d)	Mögliche Berechnung der Höhe von s_{1} : Man berechnet den Schnittpunkt S_{1} der Diagonalen der Dachfläche oder den Mittelpunkt M einer der Diagonalen. Die x_{3}-Koordinate dieses Punktes gibt die Höhe von s_{1} (in Längeneinheiten) an. Mögliche Berechnung der Höhe von \underline{S}_{2} : Man bestimmt den Punkt $R(1\|1,5\| r)$, der auf der Dachfläche liegt. Die x_{3} Koordinate r gibt die Höhe von s_{2} (in Längeneinheiten) an. Berechnung von S_{1} : $\overrightarrow{s_{1}}=\frac{1}{2} \cdot\left(\overrightarrow{a_{2}}+\overrightarrow{c_{2}}\right)=\left(\begin{array}{c}1,5 \\ 1,125 \\ 1,25\end{array}\right)$, die x_{3}-Koordinate ist $1,25$. Die Länge des Pfeilers s_{1} beträgt also 1,25 LE entsprechend $12,5 \mathrm{~m}$.		5	20
	Insgesamt 100 BWE	20	60	20

STOCHASTIK 1

III. 1 Welche Urne ist das?

Betrachten Sie zwei Urnen.
Die Urne U_{1} enthält 6 schwarze und 4 weiße Kugeln.
Die Urne U_{2} enthält 3 schwarze und 7 weiße Kugeln.
In den folgenden Aufgabenteilen werden immer einzelne Kugeln mit Zurücklegen gezogen.
a) Aus der Urne U_{1} soll 10 -mal mit Zurücklegen gezogen werden. Berechnen Sie (ohne Tafelwerk) die Wahrscheinlichkeit, dass

- nur schwarze Kugeln gezogen werden
- genau 5 schwarze Kugeln gezogen werden
- höchstens 2 schwarze Kugeln gezogen werden
- mindestens 3 schwarze Kugeln gezogen werden.

Es muss bei jeder Rechnung nicht nur das Ergebnis, sondern auch der Rechenweg erkennbar sein.
b) Betrachten Sie nun folgendes Stufenexperiment:

Mithilfe eines Münzwurfs wird eine der beiden äußerlich nicht unterscheidbaren Urnen ausgewählt. Anschließend wird $10-\mathrm{mal}$ mit Zurücklegen aus dieser Urne gezogen.
Berechnen Sie die Wahrscheinlichkeit oder bestimmen Sie mit Hilfe des Tafelwerks, dass

- genau 5 schwarze Kugeln gezogen werden
- höchstens 2 schwarze Kugeln gezogen werden
- mindestens 3 schwarze Kugeln gezogen werden.

Jetzt wird Ihnen folgendes Spiel angeboten: Der Spielanbieter wählt mithilfe eines Münzwurfs eine der beiden äußerlich nicht unterscheidbaren Urnen aus. Sie dürfen dann zu Testzwecken 10-mal mit Zurücklegen eine Kugel aus dieser Urne ziehen.
Anschließend müssen Sie sich entscheiden, ob Sie für einen Spieleinsatz von $70 €$ an dem Spiel teilnehmen. Wenn Sie teilnehmen, erhalten Sie eine Auszahlung von $15 €$ für jede schwarze Kugel, die sich in der ausgewählten Urne befindet.
c) Natürlich lohnt sich nur die Urne U_{1}. Wenn Sie wüssten, dass die Urne U_{2} ausgewählt wurde, würden Sie wohl nicht spielen. Viele schwarze Kugeln beim Testen sprechen für U_{1}.
Ein Statistiker berät Sie: Er schlägt vor, nur dann zu spielen, wenn mehr als 5 schwarze Kugeln gezogen werden.

- Nehmen Sie an, dass die Urne U_{2} vorliegt, und bestimmen Sie die Wahrscheinlichkeit dafür, dass Sie dennoch den Rat bekommen zu spielen.
- Nehmen Sie andererseits an, dass die Urne U_{1} vorliegt, und bestimmen Sie die Wahrscheinlichkeit dafür, dass Sie dennoch den Rat bekommen nicht zu spielen.
- Interpretieren Sie die beiden Ergebnisse vor dem Hintergrund der Methode des „Testens von Hypothesen".
d) Nachdem Sie 10 mal gezogen haben, stellen Sie fest, dass genau 5 Kugeln schwarz waren.

Nach dem Rat des Statistikers sollten Sie nun die Finger von der Urne lassen.
Aber irgendwie reizt es Sie doch, auf das Spiel einzugehen. Sie beschließen deshalb, die (durch das Versuchsergebnis bedingte) Wahrscheinlichkeit dafür auszurechnen, dass die angebotene Urne doch die Urne U_{1} ist.
Zeigen Sie, dass diese Wahrscheinlichkeit ungefähr 66% beträgt.
e) Bei einer Entscheidung für das Spiel würden Sie also - bei genau 5 gezogenen schwarzen Kugeln - mit 66\% Wahrscheinlichkeit 90 Euro einnehmen. Führen Sie diesen Gedanken zu Ende und berechnen Sie dazu den (durch das Testergebnis bedingten) Erwartungswert Ihrer Spieleinnahmen. Begründen Sie dann eine Entscheidung für oder gegen die Teilnahme am Spiel.

Erwartungshorizont

	Lösungsskizze	Zuordnung, Bewertung		
		I	II	III
a)	Beim 10-fachen Ziehen mit Zurücklegen aus der Urne 1 ist die Anzahl der schwarzen Kugeln (10- $\frac{6}{10}$) -binomialverteilt. - $\mathrm{P}($, ,alle Kugeln schwarz" $)=p^{10}=0,6^{10} \approx 0,60 \%$ - $\mathrm{P}(,, 5$ schwarze Kugeln" $)=\binom{10}{5} \cdot\left(\frac{6}{10}\right)^{5} \cdot\left(\frac{4}{10}\right)^{5} \approx 20,07 \%$ - P(,,höchstens 2 schwarze Kugeln aus $\left.\mathrm{U}_{1}{ }^{\prime}\right)=$ $\left(\frac{4}{10}\right)^{10}+10 \cdot \frac{6}{10} \cdot\left(\frac{4}{10}\right)^{9}+\binom{10}{2} \cdot\left(\frac{6}{10}\right)^{2} \cdot\left(\frac{4}{10}\right)^{8} \approx 1,23 \%$ - $\mathrm{P}\left(\right.$,,mindestens 3 schwarze Kugeln aus $\left.\mathrm{U}_{1}{ }^{\prime}\right) \approx 1-1,23 \%=98,77 \%$.	20	5	
b)	Man betrachtet die ganze Situation als Stufenexperiment und wendet die Pfadregeln an: Auf der ersten Stufe wird eine Urne mit der Münze ausgewürfelt: $P\left(U_{1}\right)=P\left(U_{2}\right)=\frac{1}{2}$ und dann wird aus dieser Urne mit Zurücklegen 10 mal gezogen. Wegen der Gleichverteilung der beiden Möglichkeiten auf der ersten Stufe, muss man die Wahrscheinlichkeiten der betrachteten Ereignisse für beide Urnen berechnen, und dann jeweils arithmetisch mitteln. Für U_{1} ist die Rechnung schon in a) erfolgt, für U_{2} kann diese analog zu a) oder schneller mit Hilfe des Tafelwerks ($p=0,3$) erfolgen: - $\mathrm{P}\left(,, 5\right.$ schwarze Kugeln aus $\left.\mathrm{U}_{2}{ }^{*}\right) \approx 10,29 \%$ - $\mathrm{P}\left(, „\right.$ höchstens 2 schwarze Kugeln aus $\left.\mathrm{U}_{2}{ }^{*}\right) \approx 0,0282+0,1211+0,2335$ $\approx 38,28 \%$ - $P\left(\right.$, ,mindestens 3 schwarze Kugeln aus $\left.U_{2} "\right) \approx 1-38,28 \%=61,72 \%$. Es ergeben sich daraus folgende Mittelwerte: - $\mathrm{P}(,, 5$ schwarze Kugeln") $\approx 15,18 \%$ - $\mathrm{P}($,,höchstens 2 schwarze Kugeln") $\approx 19,76$ \% - $\mathrm{P}($ „,mindestens 3 schwarze Kugeln") $\approx 80,24 \%$	5	20	
c)	Dem Tafelwerk entnimmt man: $P_{1}=\sum_{k=6}^{10}\binom{10}{k} \cdot(0,3)^{k} \cdot(0,7)^{10-k} \approx 4,73 \%$ Dem Tafelwerk entnimmt man: $P_{2}=\sum_{k=0}^{5}\binom{10}{k} \cdot 0,6^{k} \cdot 0,4^{(10-k)} \approx 36,69 \%$			

	Lösungsskizze	Zuordnung, Bewertung		
		I	II	III
	Hier wird also auf dem 5\%-Signifikanzniveau die Hypothese H_{1} : Es handelt sich um die Urne U_{1} gegen die Nullhypothese H_{0} : Es handelt sich um die Urne U_{2} getestet. P_{1} entspricht der Irrtumswahrscheinlichkeit 1.Art, P_{2} entspricht der Irrtumswahrscheinlichkeit 2. Art. Die Entscheidungsregel ist sehr „vorsichtig".		20	5
d)	Da die Anfangsverteilung für die beiden möglichen Urnen als Gleichverteilung (Münzwurf) angenommen wird, vereinfacht sich die Rechnung z.B. mit Hilfe des Satzes von Bayes in folgender Weise: $\begin{aligned} & P\left(U=U_{1} \mid K=5\right) \\ & \quad=\frac{B(10 ; 0,6 ; 5)}{B(10 ; 0,6 ; 5)+B(10 ; 0,3 ; 5)}=\frac{0,6^{5} \cdot 0,4^{5}}{0,6^{5} \cdot 0,4^{5}+0,3^{5} \cdot 0,7^{5}} \approx 66,1 \% \end{aligned}$		5	10
e)	Wir fassen den „Wert" der Urne als Zufallsvariable W auf: Mit $\begin{array}{ll} W\left(U_{1}\right)=6 \cdot 15 €=90 € & W\left(U_{2}\right)=3 \cdot 15 €=45 € \\ P\left(U_{1}\right)=0,66 \text { und } & P\left(U_{2}\right)=0,34 \end{array}$ erhalten wir: $\quad E(W)=0,66 \cdot 90 €+0,34 \cdot 45 €=74,7 €$. Die „Werterwartung" ist also größer als der Kaufpreis von $70 €$. Wenn man die „Werterwartung" im Vergleich zum Kaufpreis als Entscheidungskriterium wählt, dann sollte man sich nach dem Testergebnis $K=5$ auf das Spiel einlassen.		5	5
	Insgesamt 100 BWE	25	55	20

III. 2 Alkoholsünder

In einer bestimmten Stadt an einer bestimmten Stelle führt die Polizei in regelmäßigen Abständen in der Nacht von Sonnabend auf Sonntag zwischen 1 Uhr und 4 Uhr Verkehrskontrollen durch. Dabei muss der Fahrer „in die Röhre pusten" und es wird dabei festgestellt, ob der Alkoholgehalt im Blut im gesetzlich erlaubten Rahmen liegt oder nicht. Aus mehrjähriger Erfahrung weiß die Polizei, dass ungefähr 10% der Fahrer um diese Zeit an dieser Stelle die „Promillegrenze" überschreiten. Wir nennen diese Personen hier kurz „Alkoholsünder". Es soll angenommen werden, dass die Anzahl der Alkoholsünder in den Verkehrskontrollen einer Binomialverteilung genügt.
a) Berechnen Sie die Wahrscheinlichkeit, dass in einer Nacht bei 20 Kontrollen

- genau zwei Alkoholsünder ermittelt werden
- nicht mehr als zwei Alkoholsünder ermittelt werden
- mindestens drei Alkoholsünder ermittelt werden
- der erste ermittelte Alkoholsünder im letzten oder vorletzten kontrollierten Auto sitzt
- genau zwei Alkoholsünder ermittelt werden und diese beiden auch noch in zwei aufeinander folgenden Kontrollen erfasst werden.
b) Um die Quote der Alkoholsünder zu senken, werden probeweise Warnschilder der Verkehrswacht aufgestellt. Nach einigen Wochen soll nun an Hand einer Messung von 100 Autofahrern ermittelt werden, ob diese Maßnahme auf dem 5% Niveau ($\alpha \leq \alpha_{0}=5 \%$) zu einer signifikanten Senkung der bisherigen Quote der Alkoholsünder geführt hat (Nullhypothese: $p \geq 10 \%$).
Sie können zur Berechnung die Tabelle in der Anlage verwenden.
- Begründen Sie, dass man genau dann auf dem 5\% Niveau von einer signifikanten Senkung der Alkoholsünderquote sprechen sollte, wenn höchstens 4 Alkoholsünder ermittelt werden.
- Falls durch die Warnschilder die Alkoholsünderquote tatsächlich auf 5\% gesenkt worden wäre, wie groß wäre dann bei dem Test die Wahrscheinlichkeit β für den Fehler 2. Art ? Interpretieren Sie das Ergebnis.
c) Es wird nun angenommen, dass bei dem Test aus b) unter den 100 Autofahrern nur 3 Alkoholsünder ermittelt werden. Es liegt also ein signifikantes Ergebnis vor und eine Bürgerinitiative tritt deshalb dafür ein, auf vielen weiteren Straßenabschnitten die Schilder aufzustellen. Darauf argumentieren einige Haushaltspolitiker, dass dies wegen der hohen Kosten erst zu vertreten wäre, wenn die Alkoholsünderquote dadurch von 10 \% auf unter 5\% gesenkt würde. Beurteilen Sie das Testergebnis im Hinblick auf diesen Anspruch.
d) Beurteilen Sie die oben gemachte Annahme, dass die Anzah1 der Alkoholsünder in den Verkehrskontrollen binomialverteilt ist.

Anlage zur Aufgabe „Alkoholsünder"

Auszug aus einem Tafelwerk der summierten Binomialverteilung

$$
F(n, p ; k)=B(n, p ; 0)+\ldots .+B(n, p ; k)=\binom{n}{0} \cdot p^{0} \cdot(1-p)^{(n-0)}+\ldots+\binom{n}{k} \cdot p^{k} \cdot(1-p)^{(n-k)}
$$

					\mathbf{p}			
\mathbf{n}	\mathbf{k}	0,01	0,02	0,03	0,04	0,05	0,1	0,15
	$\mathbf{0}$	0,3660	0,1326	0,0476	0,0169	0,0059	0,0000	0,0000
	$\mathbf{1}$	0,7358	0,4033	0,1946	0,0872	0,0371	0,0003	0,0000
	$\mathbf{2}$	0,9206	0,6767	0,4198	0,2321	0,1183	0,0019	0,0000
	$\mathbf{3}$	0,9816	0,8590	0,6472	0,4295	0,2578	0,0078	0,0001
	$\mathbf{4}$	0,9966	0,9492	0,8179	0,6289	0,4360	0,0237	0,0004
	$\mathbf{5}$	0,9995	0,9845	0,9192	0,7884	0,6160	0,0576	0,0016
	$\mathbf{6}$	0,9999	0,9959	0,9688	0,8936	0,7660	0,1172	0,0047
	$\mathbf{7}$		0,9991	0,9894	0,9525	0,8720	0,2061	0,0122
	$\mathbf{8}$		0,9998	0,9968	0,9810	0,9369	0,3209	0,0275
	$\mathbf{9}$			0,9991	0,9932	0,9718	0,4513	0,0551
	$\mathbf{1 0}$			0,9998	0,9978	0,9885	0,5832	0,0994
	$\mathbf{1 1}$				0,9993	0,9957	0,7030	0,1635
	$\mathbf{1 2}$				0,9998	0,9985	0,8018	0,2473
	$\mathbf{1 3}$					0,9995	0,8761	0,3474
	$\mathbf{1 4}$					0,9999	0,9274	0,4572
	$\mathbf{1 5}$						0,9601	0,5683
100	$\mathbf{1 6}$						0,9794	0,6725
	$\mathbf{1 7}$						0,9900	0,7633
	$\mathbf{1 8}$						0,9954	0,8372
	$\mathbf{1 9}$						0,9980	0,8935
	$\mathbf{2 0}$						0,9992	0,9337
	$\mathbf{2 1}$						0,9997	0,9607
	$\mathbf{2 2}$						0,9999	0,9779
	$\mathbf{2 3}$							0,9881
	$\mathbf{2 4}$							0,9939
	$\boldsymbol{a r}$							

Erwartungshorizont

	Lösungsskizze	Zuordnung, Bewertung		
		I	II	III
a)	- $\quad P\left(\right.$, genau 2 Alkoholsünder") $=\binom{20}{2} \cdot 0,1^{2} \cdot 0,9^{18} \approx 28,5 \%$. - $P($, ,nicht mehr als 2 Alkoholsünder" $)=\sum_{\mathrm{k}=0}^{2}\binom{20}{\mathrm{k}} \cdot 0,1^{\mathrm{k}} \cdot 0,9^{20-\mathrm{k}} \approx 67,7 \%$. - $\quad P($, ,mindestens 3 Alkoholsünder" $) \approx 1-67,7 \%=32,3 \%$. - $\quad P($, ,der erste Alkoholsünder sitzt im letzten oder vorletzten kontrollierten Auto" $)=\left(0,9^{18}+0,9^{19}\right) \cdot 0,1 \approx 2,9 \%$ oder auch $P($,,der erste Alkoholsünder sitzt im letzten oder vorletzten kontrollierten Auto") $=0,9^{18} \cdot 0,1^{2}+0,9^{18} \cdot 0,1 \cdot 0,9+0,9^{19} \cdot 0,1 \approx 2,9 \%$. - $\quad P\left(\right.$,,genau zwei Alkoholsünder aufeinander folgend $\left.{ }^{*}\right)=19 \cdot 0,1^{2} \cdot 0,9^{18} \approx 2,9 \%$.	15	20	
b)	Die berechneten Wahrscheinlichkeiten können der Tabelle entnommen werden. Bestimmung des Ablehnungsbereichs: Es gilt: $\sum_{k=0}^{4}\binom{100}{k} \cdot 0,1^{k} \cdot 0,9^{100-k} \approx 2,37 \% \quad$, aber $\sum_{k=0}^{5}\binom{100}{k} \cdot 0,1^{k} \cdot 0,9^{100-k} \approx 5,76 \%$ Also sollte die Nullhypothese $H_{0}: p \geq 0,1$ verworfen werden, wenn weniger als 5 Alkoholsünder ermittelt werden. Bestimmung des Fehlers 2. Art: $\beta=1-\sum_{k=0}^{4}\binom{100}{k} \cdot(0,05)^{k} \cdot(0,95)^{100-k} \approx 56,4 \%$ Dieser Wert ist sehr hoch. Selbst wenn die Alkoholsünderquote deutlich gesenkt würde, ist die Wahrscheinlichkeit groß, dass der Test dies nicht „entdeckt".	10	30	
c)	Da $3<4$, spricht das Ergebnis signifikant für eine Senkung der Alkoholsünderquote. Wenn die Haushaltspolitiker der Maßnahme grundsätzlich negativ gegenüberstehen, könnten sie eine Begründung dafür verlangen, dass die Quote unter 5\% liegt, um der Maßnahme zuzustimmen, also verlangen, dass die Nullhypothese $H_{0}: p \geq 0,05 \mathrm{mit}$ Signifikanz verworfen werden kann. Dann wäre der Ablehnungsbereich $k \leq 1$. Es gilt nämlich $\sum_{k=0}^{1}\binom{100}{k} \cdot 0,05^{k} \cdot 0,95^{100-k} \approx 3,71 \%$, aber			

	Lösungsskizze	Zuordnung, Bewertung		
		I	II	III
	$\sum_{k=0}^{2}\binom{100}{k} \cdot 0,05^{k} \cdot 0,95^{100-k} \approx 11,83 \%$ Vor diesem Hintergrund ist das Ergebnis nicht signifikant, sie würden die Maßnahme ablehnen. Wenn sie der Maßnahme dagegen grundsätzlich positiv gegenüberstehen, würden sie sich nur absichern und die Maßnahme nur dann ablehnen, wenn die Nullhypothese $H_{0}: p \leq 0,05$ signifikant abgelehnt werden muss. Dann wäre der Ablehnungsbereich $k \geq 10$. Es gilt nämlich $\begin{aligned} & 1-\sum_{k=0}^{9}\binom{100}{k} \cdot 0,05^{k} \cdot 0,95^{100-k} \approx 1-97,18 \% \approx 2,8 \% \text {, aber } \\ & 1-\sum_{k=0}^{8}\binom{100}{k} \cdot 0,05^{k} \cdot 0,95^{100-k} \approx 1-93,69 \% \approx 6,3 \% . \end{aligned}$ So gesehen liegt keine Signifikanz vor. Sie können damit nicht begründen, dass die Alkoholsünderquote über 5% liegt und würden die Maßnahme billigen. Diese ausführliche Lösung wird nicht erwartet .Um die volle Punktzahl dieses Aufgabenteils zu erreichen, wird mindestens einer der beiden Testvorschläge erwartet und die darauf basierende Interpretation des Testergebnisses von drei ermittelten Alkoholsündern.			15
d)	Es geht um die Frage der stochastischen Unabhängigkeit des „Trinkverhaltens" der einzelnen Fahrer. Diese ist z.B. dann nicht gegeben, wenn einige die Kontrollstelle entdecken bzw. davon erfahren haben, wenn „Gruppen" fahren (z.B. eine Hochzeitsgesellschaft) oder wenn z. B. in der Sylvester- oder Rosenmontagnacht gemessen wird. Es wird von den Schülerinnen und Schülern eine „ergebnisoffene" zusammenhängende Darstellung erwartet.			10
	Insgesamt 100 BWE	25	50	25

