In einem kartesischen Koordinatensystem sind die vier Punkte \(A(-2 \mid 8 \mid 0) \), \(B(0 \mid 0 \mid -2) \), \(C(1 \mid 2 \mid 0) \) und \(D(0 \mid 6 \mid 1) \) gegeben.

1. a) Weisen Sie nach, dass die vier Punkte \(A, B, C \) und \(D \) ein Trapez mit zwei gleich langen gegenüberliegenden Seiten, aber kein Parallelogramm (also ein gleichschenkliges Trapez) bilden.

b) Berechnen Sie die Koordinaten des Diagonalenschnittpunktes \(M \). \(\text{zur Kontrolle: } M(0 \mid 4 \mid 0) \)

c) Berechnen Sie den Abstand \(d \) des Punktes \(D \) von der Geraden \(AB \). \(\text{zur Kontrolle: } d = 1,5\sqrt{2} \)

d) Berechnen Sie den Flächeninhalt des gleichschenkligen Trapezes \(ABCD \).

e) Bestimmen Sie eine Gleichung der Ebene \(E \), in der das Viereck \(ABCD \) liegt, in Normalenform.
 \(\text{möglicher Ergebnis: } E: 2x_1 + x_2 - 2x_3 - 4 = 0 \)

Das gleichschenkligke Trapez \(ABCD \) bildet zusammen mit einem weiteren Punkt \(S \) eine Pyramide \(ABCDS \). Der Punkt \(S \) liegt auf der Lotgeraden zur Ebene \(E \) durch den Punkt \(M \) und hat von der Ebene \(E \) den Abstand 15; der Koordinatenursprung und \(S \) liegen auf verschiedenen Seiten von \(E \).

2. a) Bestimmen Sie die Koordinaten von \(S \). \(\text{zur Kontrolle: } S(10 \mid 9 \mid -10) \)

b) Zeigen Sie, dass der Punkt \(T(6 \mid 7 \mid -6) \) die Strecke \([MS]\) innen im Verhältnis 3:2 teilt.

c) Bestimmen Sie eine Gleichung der zu \(E \) parallelen Ebene \(F \), die durch den Punkt \(T \) verläuft, in Normalenform.

d) Beim Schnitt der Ebene \(F \) mit der Pyramide \(ABCDS \) entstehen zwei Teilkörper: ein Pyramidenstumpf und die zugehörige Ergänzungspyramide. Zeigen Sie, dass das Volumen der Ergänzungspyramide weniger als 7% des Volumens der Pyramide \(ABCDS \) beträgt.
In einem kartesischen Koordinatensystem sind die vier Punkte \(A(-2 \mid 8 \mid 0) \), \(B(0 \mid 0 \mid -2) \), \(C(1 \mid 2 \mid 0) \) und \(D(0 \mid 6 \mid 1) \) gegeben.

1. a) Weisen Sie nach, dass die vier Punkte \(A \), \(B \), \(C \) und \(D \) ein Trapez mit zwei gleich langen gegenüberliegenden Seiten, aber kein Parallelogramm (also ein gleichschenkliges Trapez) bilden.

b) Berechnen Sie die Koordinaten des Diagonalenschnittpunktes \(M \). [zur Kontrolle: \(M(0 \mid 4 \mid 0) \)]

c) Berechnen Sie den Abstand \(d \) des Punktes \(D \) von der Geraden \(AB \). [zur Kontrolle: \(d = 1,5\sqrt{2} \)]

\[\alpha = 45^\circ \] mehrere Lösungswegwege

d) Berechnen Sie den Flächeninhalt des gleichschenklichen Trapezes \(ABCD \). \(A_{\text{Trapez}} = 13,5 \, \text{FE} \) (elementar)

e) Bestimmen Sie eine Gleichung der Ebene \(E \), in der das Viereck \(ABCD \) liegt, in Normalenform. [mögliches Ergebnis: \(2x_1 + x_2 - 2x_3 - 4 = 0 \)]

Das gleichschenklige Trapez \(ABCD \) bildet zusammen mit einem weiteren Punkt \(S \) eine Pyramide \(ABCDS \). Der Punkt \(S \) liegt auf der Lotgeraden zur Ebene \(E \) durch den Punkt \(M \) und hat von der Ebene \(E \) den Abstand 15; der Koordinatenursprung und \(S \) liegen auf verschiedenen Seiten von \(E \).

2. a) Bestimmen Sie die Koordinaten von \(S \). [zur Kontrolle: \(S(10 \mid 9 \mid -10) \)]

\[\overrightarrow{OS} = \overrightarrow{OM} + 15 \cdot n_E \]

b) Zeigen Sie, dass der Punkt \(T(6 \mid 7 \mid -6) \) die Strecke \([MS]\) innen im Verhältnis 3:2 teilt.

\[MM = \lambda TS \implies \lambda = \frac{3}{2} \]

c) Bestimmen Sie eine Gleichung der zu \(E \) parallelen Ebene \(F \), die durch den Punkt \(T \) verläuft, in Normalenform.

\[F: 2x_1 + x_2 - 2x_3 - 31 = 0 \]

d) Beim Schnitt der Ebene \(F \) mit der Pyramide \(ABCDS \) entstehen zwei Teilkörper: ein Pyramidenstumpf und die zugehörige Ergänzungspyramide. Zeigen Sie, dass das Volumen der Ergänzungspyramide weniger als 7% des Volumens der Pyramide \(ABCDS \) beträgt.

\[V_{\text{Ergänzungspyramide}} = \left(\frac{2}{5}\right)^3 \cdot V_{ABCDS} = 6,4\% \cdot V_{ABCDS} \] (zentrische Streckung)
Abroll-Aufgabe Abiturprüfung GK Bayern 2001

Gegeben ist in einem kartesischen Koordinatensystem die Ebene $E: 2x_1 + 6x_2 + 3x_3 = 60$. Ihr Schnittpunkt mit der x_1-Achse heißt S_1, mit der x_2-Achse S_2 und mit der x_3-Achse S_3.

1. a) Bestimmen Sie die Koordinaten von S_1, S_2 und S_3 und geben Sie eine Gleichung der Geraden S_1S_2 an. [zur Kontrolle: $S_3(0 \mid 0 \mid 20)$]

b) Vom Punkt S_3 wird ein Lot auf die Gerade S_1S_2 gefällt. Berechnen Sie die Koordinaten des Lotfußpunktes L. [zur Kontrolle: $L(3 \mid 9 \mid 0)$]

c) Legen Sie ein Koordinatensystem an und tragen Sie das Dreieck $S_1S_2S_3$ und die Gerade S_3L ein.

d) Begründen Sie, dass L der Punkt der Geraden S_1S_2 ist, der den kürzesten Abstand zum Ursprung O hat, und berechnen Sie diesen Abstand. Ermitteln Sie die Winkel im Dreieck OLS_3 auf $0,1^\circ$ genau.

2. Eine Kugel mit Radius 7 berührt die Ebene E im Punkt S_3.

a) Bestimmen Sie die Koordinaten der möglichen Kugelmittelpunkte.

Im Folgenden wird der Fall betrachtet, dass die Kugel zunächst den Mittelpunkt $M(2 \mid 6 \mid 23)$ hat (siehe Skizze) und dann auf der Ebene E so rollt, dass ihre Spur auf der Halbgeraden $[S_3L$ liegt.

b) Bestimmen Sie die Gleichung der Geraden m, auf der sich der Kugelmittelpunkt bewegt.

Die Kugel erreicht schließlich die x_1x_2-Ebene und rollt auf dieser weiter.

Skizze nicht maßstabsgetreu

c) Berechnen Sie den Schnittpunkt T der Geraden m (siehe Aufgabe 2b)) mit der zur x_1x_2-Ebene parallelen Ebene, in der sich nun der Kugelmittelpunkt bewegt. [zur Kontrolle: $T(4,4 \mid 13,2 \mid 7)$]

d) Bestimmen Sie den letzten Berührungspunkt B, den die Kugel bei dem beschriebenen Abrollvorgang mit der Ebene E hatte, und markieren Sie in der Zeichnung von Aufgabe 1c) mit Farbe die Spur, welche die Kugel auf der Ebene E hinterließ.
Abroll-Aufgabe Abiturprüfung GK Bayern 2001 Lösungen

Gegeben ist in einem kartesischen Koordinatensystem die Ebene $E: 2x_1 + 6x_2 + 3x_3 = 60$.
Ihr Schnittpunkt mit der x_1-Achse heißt S_1, mit der x_2-Achse S_2 und mit der x_3-Achse S_3.

1. a) Bestimmen Sie die Koordinaten von S_1, S_2 und S_3 und geben Sie eine Gleichung der Geraden S_1S_2 an.

b) Vom Punkt S_3 wird ein Lot auf die Gerade S_1S_2 gefällt. Berechnen Sie die Koordinaten des Lotfußpunktes L.

c) Legen Sie ein Koordinatensystem an und tragen Sie das Dreieck $S_1S_2S_3$ und die Gerade S_3L ein.

d) Begründen Sie, dass L der Punkt der Geraden S_1S_2 ist, der den kürzesten Abstand zum Ursprung O hat, und berechnen Sie diesen Abstand. Ermitteln Sie die Winkel im Dreieck OLS_3 auf $0,1^\circ$ genau.

2. Eine Kugel mit Radius 7 berührt die Ebene E im Punkt S_3.

a) Bestimmen Sie die Koordinaten der möglichen Kugelmittelpunkte.

Im Folgenden wird der Fall betrachtet, dass die Kugel zunächst den Mittelpunkt $M(2|6|23)$ hat (siehe Skizze) und dann auf der Ebene E so rollt, dass ihre Spur auf der Halbgeraden $[S_3L$ liegt.

b) Bestimmen Sie die Gleichung der Geraden m, auf der sich der Kugelmittelpunkt bewegt.

Die Kugel erreicht schließlich die x_1x_2-Ebene und rollt auf dieser weiter.

c) Berechnen Sie den Schnittpunkt T der Geraden m (siehe Aufgabe 2b)) mit der zur x_1x_2-Ebene parallelen Ebene, in der sich nun der Kugelmittelpunkt bewegt.

b) Vom Punkt S_3 wird ein Lot auf die Gerade S_1S_2 gefällt. Berechnen Sie die Koordinaten des Lotfußpunktes L.

c) Legen Sie ein Koordinatensystem an und tragen Sie das Dreieck $S_1S_2S_3$ und die Gerade S_3L ein.

d) Begründen Sie, dass L der Punkt der Geraden S_1S_2 ist, der den kürzesten Abstand zum Ursprung O hat, und berechnen Sie diesen Abstand. Ermitteln Sie die Winkel im Dreieck OLS_3 auf $0,1^\circ$ genau.

2. Eine Kugel mit Radius 7 berührt die Ebene E im Punkt S_3.

a) Bestimmen Sie die Koordinaten der möglichen Kugelmittelpunkte.

Im Folgenden wird der Fall betrachtet, dass die Kugel zunächst den Mittelpunkt $M(2|6|23)$ hat (siehe Skizze) und dann auf der Ebene E so rollt, dass ihre Spur auf der Halbgeraden $[S_3L$ liegt.

b) Bestimmen Sie die Gleichung der Geraden m, auf der sich der Kugelmittelpunkt bewegt.

Die Kugel erreicht schließlich die x_1x_2-Ebene und rollt auf dieser weiter.

c) Berechnen Sie den Schnittpunkt T der Geraden m (siehe Aufgabe 2b)) mit der zur x_1x_2-Ebene parallelen Ebene, in der sich nun der Kugelmittelpunkt bewegt.

b) Vom Punkt S_3 wird ein Lot auf die Gerade S_1S_2 gefällt. Berechnen Sie die Koordinaten des Lotfußpunktes L.

c) Legen Sie ein Koordinatensystem an und tragen Sie das Dreieck $S_1S_2S_3$ und die Gerade S_3L ein.

d) Begründen Sie, dass L der Punkt der Geraden S_1S_2 ist, der den kürzesten Abstand zum Ursprung O hat, und berechnen Sie diesen Abstand. Ermitteln Sie die Winkel im Dreieck OLS_3 auf $0,1^\circ$ genau.

2. Eine Kugel mit Radius 7 berührt die Ebene E im Punkt S_3.

a) Bestimmen Sie die Koordinaten der möglichen Kugelmittelpunkte.

Im Folgenden wird der Fall betrachtet, dass die Kugel zunächst den Mittelpunkt $M(2|6|23)$ hat (siehe Skizze) und dann auf der Ebene E so rollt, dass ihre Spur auf der Halbgeraden $[S_3L$ liegt.

b) Bestimmen Sie die Gleichung der Geraden m, auf der sich der Kugelmittelpunkt bewegt.

Die Kugel erreicht schließlich die x_1x_2-Ebene und rollt auf dieser weiter.

c) Berechnen Sie den Schnittpunkt T der Geraden m (siehe Aufgabe 2b)) mit der zur x_1x_2-Ebene parallelen Ebene, in der sich nun der Kugelmittelpunkt bewegt.