Die Lösung der Gleichung $e^x = 2$ ist $x = \ln 2$.

Der natürliche Logarithmus von 2, kurz $\ln 2 = 0.6931$, ist also ein Exponent, für den gilt: $e^{\ln 2} = e^{0.6931} = 2$, allgemein: $e^{\ln x} = x$.

Werden (positive) Zahlen als Potenz zur Basis adargestellt, so heißen die Exponenten Logarithmen.

$$e^{4x} = 8 \cdot e^{x+1}$$

$$e^{4x} = 8 \cdot e^x \cdot e$$

$$e^{3x} = 8 \cdot e$$

$$3x = \ln(8 \cdot e)$$

$$x = 1,026$$

Die Logarithmenregeln lauten: (Es sind die Regeln für die Exponenten in der Potenzrechnung bei fester Basis.)

a)
$$\ln ab = \ln a + \ln b$$

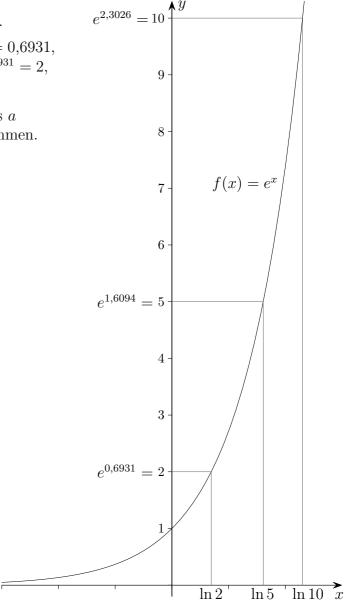
b)
$$\ln \frac{a}{b} = \ln a - \ln b$$

c)
$$\ln a^n = n \cdot \ln a$$
 $a, b > 0$

$$e^{\ln 2 + \ln 3} = e^{\ln 2} \cdot e^{\ln 3} = 2 \cdot 3 = 6 = e^{\ln 6}$$

 $\implies \ln 2 + \ln 3 = \ln 6$

$$\ln(a+b) \neq \ln a + \ln b$$



 $\ln 2 + \ln 5 = \ln(2 \cdot 5) = \ln 10$

Löse die Gleichungen:

a)
$$e^{2x} = 8$$

$$b) \quad e^x = 2 \cdot e^{2x-1}$$

c)
$$4e^x - e^{3x} = 0$$
 d) $e^{-x} = 3 \cdot e^{x-2}$

d)
$$e^{-x} = 3 \cdot e^{x-2}$$

e)
$$\ln(x+1) = 2$$
 f) $e^{2x} - e^x = 1$

f)
$$e^{2x} - e^x = 1$$

Vereinfache $e^{1+\frac{1}{2}\ln a}$

Löse die Gleichungen:

a)
$$e^{2x} = 8$$

a)
$$e^{2x} = 8$$
 b) $e^x = 2 \cdot e^{2x-1}$

c)
$$4e^x - e^{3x} = 0$$
 d) $e^{-x} = 3 \cdot e^{x-2}$

d)
$$e^{-x} = 3 \cdot e^{x-2}$$

e)
$$\ln(x+1) = 2$$
 f) $e^{2x} - e^x = 1$

f)
$$e^{2x} - e^x = 1$$

Vereinfache $e^{1+\frac{1}{2}\ln a}$

Lösungen:

a)
$$x = 1.0397$$

a)
$$x = 1,0397$$
 b) $x = 0,3069$

c)
$$x = 0.6931$$
 d) $x = 0.4507$

d)
$$x = 0.4507$$

e)
$$x = 6.3891$$
 f) $x = 0.4812$

f)
$$x = 0.4812$$

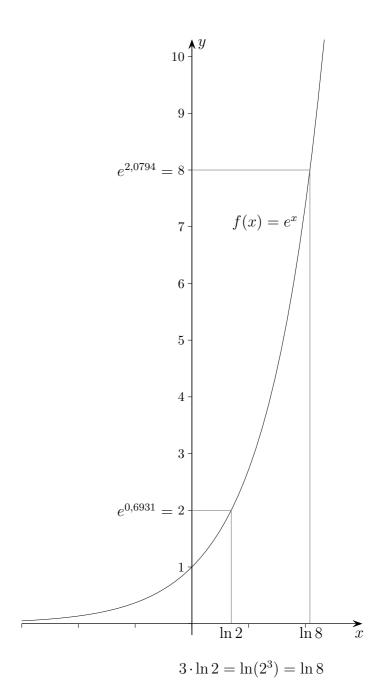
Tipp zu e) $e^{\ln(x+1)} = e^2$ (entlogarithmieren)

$$e^{1+\frac{1}{2}\ln a} = e \cdot e^{\frac{1}{2}\ln a} = e \cdot a^{\frac{1}{2}} = e \cdot \sqrt{a}$$

$$e^{0,6931} = 2$$

 $e^{\ln 2} = 2$ |()³
 $e^{3 \cdot \ln 2} = 2^3$
 $3 \cdot \ln 2 = \ln(2^3)$

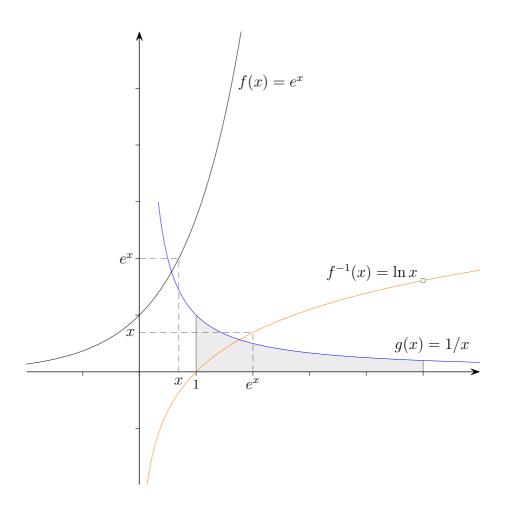
allgemein $\ln a^n = n \ln a$



Wir stellen uns vor, dass die positiven Zahlen in der Potenzschreibweise (Basis e) vorliegen. Beim Multiplizieren werden die Exponenten addiert, beim Potenzieren mit n wird der Exponent mit n multipliziert.

Die Frage nach einem Logarithmus ist die Frage nach einem Exponenten (die Basis muss klar sein).

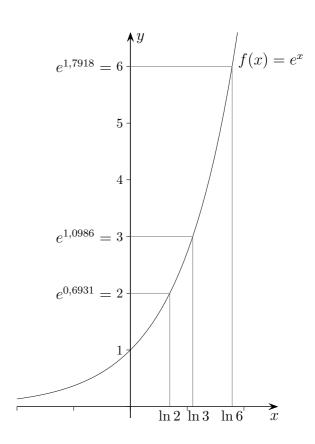
Umkehrfunktion von $f(x) = e^x$



$$e^{\ln x}=x$$
 $|$ ()' linke Seite mit der Kettenregel
$$e^{\ln x}\cdot(\ln x)'=1$$

$$(\ln x)'=1/x \quad \text{mit} \quad e^{\ln x}=x$$

 $\ln x$ ist also die Aufleitung (Integralfunktion) von 1/x mit der Nullstelle x=1. Mit numerischer Integration kann $\ln x$ auf viele Nachkommastellen ermittelt werden, siehe das Python-Programm Numerische Berechnung von $\exp(x)$ und $\ln x$.



$$e^x = 3$$

 $x = 1,0986$ genauer \approx
 $x = \ln 3$

Die Lösung der Gleichung $e^x = 3$ ist $x = \ln 3$, alternative Schreibweise $x = \ln(3)$.

Der natürliche Logarithmus von 3, kurz $\ln 3=1,0986$, ist also ein Exponent, für den gilt: $e^{\ln 3}=e^{1,0986}=3$

allgemein: $e^{\ln a} = a$ für a > 0.

$$e^{2x}=12$$
 $e^x=4\cdot e^{2-x}$ $2x=\ln 12$ $e^x=e^{\ln 4}\cdot e^{2-x}$ $x=\frac{\ln 12}{2}$ $e^x=e^{\ln 4+2-x}$ Wir gehen nun zu den Exponenten über. $x=1,2425$ $x=\ln 4+2-x$ Dieser Schritt heißt $\log \operatorname{arithmic ren}$. $x=1,6931$

Die Logarithmenregeln sollten - wenn überhaupt im gA - erst dann eingeführt werden, wenn sie als Abkürzungen einer ausführlichen Rechnung (Umformungen mit den Potenzregeln, Basis e auf beiden Seiten, Übergang zu den Exponenten) erkannt werden.

ln-Folge

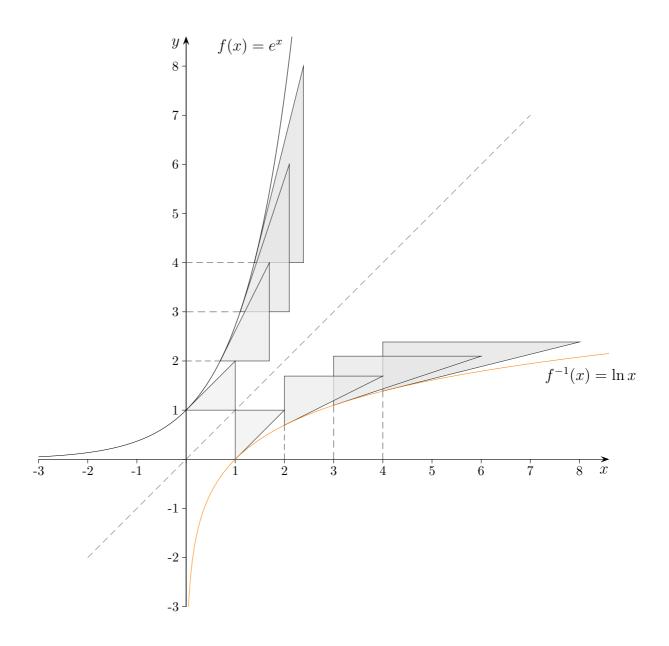
$$\operatorname{Mit} \lim_{n \to \infty} (1 + \frac{a}{n})^n = e^a \quad \operatorname{folgt} \quad \lim_{n \to \infty} (1 + \frac{\ln(a)}{n})^n = e^{\ln(a)} = a \quad \text{ und damit } \quad \ln(a) = \lim_{n \to \infty} n \left(a^{\frac{1}{n}} - 1\right).$$

$$a = 3$$

n	$n(3^{\frac{1}{n}}-1)$
10^{1}	1.16123174033904
10^{2}	1.10466919378535
10^{3}	1.09921598420405
10^{4}	1.09867263832615
10^{5}	1.09861832343501
10^{6}	1.09861289214281
10^{7}	1.09861234901555
10^{8}	1.09861229470285
10^{9}	1.09861228927158
10^{10}	1.09861228872845
10^{11}	1.09861228867414
10^{12}	1.09861228866871
10^{13}	1.09861228866817
10^{14}	1.09861228866811

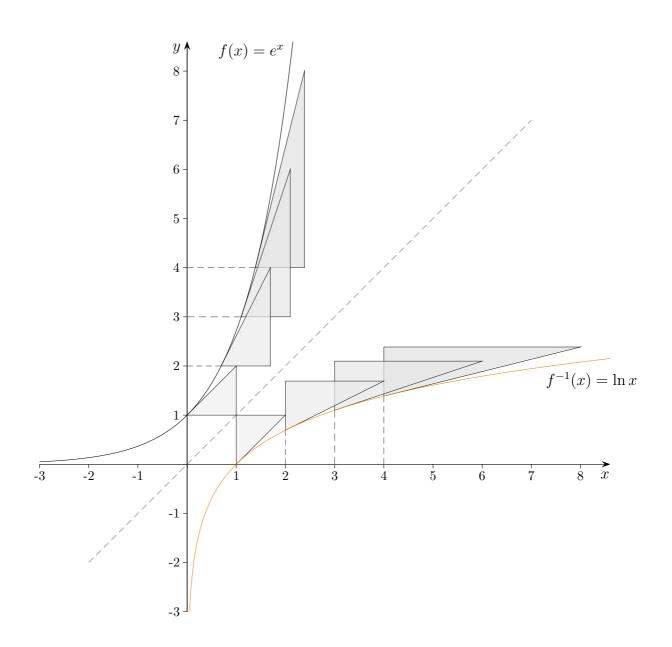
$$\ln(3) = 1,098612288668109691395$$

Anschauliches



Stelle ein Vermutung über die Ableitung von $f^{-1}(x) = \ln x$ auf.

Anschauliches



Stelle ein Vermutung über die Ableitung von $f^{-1}(x) = \ln x$ auf.

$$f(x_0) = 1$$
 $f'(x_0) = 1$ $f^{-1'}(1) = 1$
 $f(x_1) = 2$ $f'(x_1) = 2$ $f^{-1'}(2) = \frac{1}{2}$
 $f(x_3) = 3$ $f'(x_3) = 3$ $f^{-1'}(3) = \frac{1}{3}$
usw.

Bei der e-Funktion liegt beim $y\text{-Wert}\ a$ die Steigung a vor.

Bei der Umkehrfunktion erhalten wir an der Stelle a die Steigung $\frac{1}{a}$.

$$(\ln x)' = \frac{1}{x}$$

Ableitung der Exponentialfunktion $f(x) = a \cdot b^x$

Die Funktion f(b > 0) kann mit der Basis e geschrieben werden.

$$f(x) = a \cdot b^x = a \cdot e^{x \cdot \ln b}, \quad b = e^{\ln b}$$

Die Ableitung lautet dann:

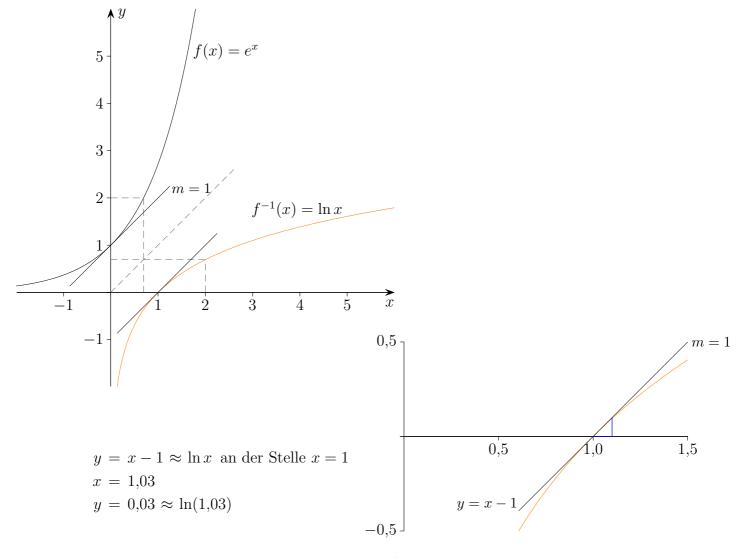
$$f'(x) = a \cdot e^{x \cdot \ln b} \cdot \ln b = a \cdot b^x \cdot \ln b$$

Beispiel

$$f(x) = 2 \cdot 1.03^{x} = 2 \cdot e^{x \cdot \ln 1.03} \approx 2 \cdot e^{0.02956 \cdot x} \approx 2 \cdot e^{0.03 \cdot x}$$

f ist die Funktion des exponentiellen Wachstums (Zinseszins) zu p=3%.

Beachte $\ln(1,03) = \ln(1+0,03) \approx 0,02956 \approx 0,03$. Das ist nicht zufällig so, siehe Grafik. Entscheidend ist die Tangentensteigung m=1.

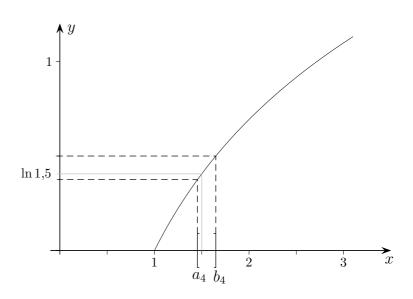


Berechnung natürlicher Logarithmen

ln 1,5 = ?

Idee:

Mit Hilfe des geom. Mittels $\sqrt{a \cdot b}$ wird eine Intervallschachtelung $[a_n; b_n]$ von 1,5 erzeugt. Wegen $\ln(\sqrt{a \cdot b}) = \frac{a+b}{2}$ werden die Logarithmen iterativ als arithmetisches Mittel bestimmt.



	n	a_n	b_n	$\ln a_n$	$\ln a_n$
Dogina [a, b] [1, a]	1	1	2,7182818	0	1
Beginn $[a_1; b_1] = [1; e]$		1	1,6487212	0	0,5
$[a_2; b_2] = [1; \sqrt{a_1 \cdot b_1}]$		1,2840254	1,6487212	0,3	0,5
weil $\sqrt{a_1 \cdot b_1} = 1,6487212 > 1,5$ ist.	4	1,4549914	$1,\!6487212$	$0,\!375$	0,5
, ,	5	1,4549914	$1,\!5488303$	$0,\!375$	$0,\!44$
Das Logarithmus-Intervall [0; 1]		1,4549914	1,5011778	$0,\!375$	$0,\!40625$
verkleinert sich auf:	7	$1,\!4779042$	1,5011778	0,3906	$0,\!406250$
$[\ln a_2; \ln b_2] = [0; \frac{\ln a_1 + \ln b_1}{2}] = [0; 0,5]$	8	$1,\!4894955$	1,5011778	$0,\!3984375$	$0,\!406250$
$[\ln a_2; \ln b_2] \equiv [0; {2}]$	9	$1,\!4953252$	1,5011778	0,4023438	$0,\!4062500$
Follow \sqrt{a} h < 1.5 wind in	10	1,4982486	1,5011778	$0,\!4042968$	$0,\!4062500$
Falls $\sqrt{a_k \cdot b_k} < 1.5$, wird in	11	$1,\!4997125$	1,5011778	$0,\!4052734$	$0,\!4062500$
$[a_k; b_k]$ die linke Grenze ersetzt,	12	$1,\!4997125$	1,5004449	$0,\!4052734$	$0,\!4057617$
desgleichen erfolgt im Logarithmus-	13	$1,\!4997125$	1,5000787	$0,\!4052734$	$0,\!4055175$
Intervall.	14	1,4998956	1,5000787	$0,\!4053955$	$0,\!4055175$
$[\ln a_k; \ln b_k]$ verkleinert sich auf:	15	1,4999871	1,5000787	$0,\!4054565$	$0,\!4055175$
$[\ln a_{k+1}; \ln b_{k+1}] = [\frac{\ln a_k + \ln b_k}{2}; \ln b_k]$	16	1,4999871	1,5000329	$0,\!4054565$	$0,\!4054870$
$[m \omega_{k+1}, m \omega_{k+1}] = [$ 2 , $m \omega_k$	17	1,4999871	1,5000100	$0,\!4054565$	$0,\!4054718$
	18	1,4999986	1,5000100	0,4054641	$0,\!4054718$
	19	1,4999986	1,5000043	0,4054641	0,4054679
	20	1,4999986	1,5000014	0,4054641	0,4054660
	21	1,4999986	1,5000000	0,4054641	0,4054651

Die Tabelle lässt sich auf einfache Weise mit einer Tabellenkalkulation berechnen, siehe hier.

Exponentialgleichungen und Logarithmen, siehe letzte Seite Startseite